A zeolite imidazolate framework,ZIF-8,was synthesized and characterized by dynamic laser light scattering,X-ray powder diffraction,scanning electron microscopy,transmission electron microscopy,thermogr... 相似文献
商业化LiFePO_4(LFP)正极材料的导电性一直是制约其性能提高的关键。为了提高LFP的性能,利用沸石咪唑酯骨架-8(ZIF-8)制备多孔碳材料(CZIF-8)改善商业化LFP正极材料的导电性,对比了两种改性LFP的方法:1)将退火的ZIF-8以物理混合的方法与LFP混合制得LFP/CZIF-8正极材料;2)ZIF-8在LFP表面原位生长后退火制得LFP@CZIF-8正极材料。X射线粉末衍射(XRD)、氮气吸脱附(BET)和拉曼光谱等测试证明,改性后的LFP仍具有橄榄石型结构,同时出现了具有介孔结构的石墨化碳材料的特征。扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试证明LFP/CZIF-8样品中LFP与CZIF-8之间未形成链接结构,而在LFP@CZIF-8样品中二者形成了核壳结构。电化学阻抗测试(EIS)表明,改性后样品的离子传输阻抗明显减小,说明两种方法均提高了LFP的导电性。充放电循环测试表明,两种改性方法均能提高LFP的循环性能和库伦效率。不同的是,倍率性能测试表明,LFP/CZIF-8样品的高倍率性能比LFP@CZIF-8样品更有优势,在10.0 C电流倍率下能够达到57.8 m A·h/g。这一研究为商业化锂离子电池电极材料的改性提供了新的思路,并且通过方法优化为产业化做了铺垫。 相似文献
Using a simple method, the aldehyde groups of zeolitic imidazolate framework‐90 (ZIF‐90) nanocrystals were converted into carboxyl, amino, and thiol groups, without affecting the integrity of the framework. Notably, for the first time, correlations between functionality and cytotoxicity are also demonstrated via in vitro cytotoxicity assays. The positive charged aminated‐ZIF‐90 presumably results in either perturbation of cell membrane, more efficient cell uptake, or both. Therefore, the half‐maximal effective (EC50) concentration of aminated‐ZIF‐90 has a higher cytotoxicity of about 30 μg mL?1. 相似文献
The zeolitic imidazolate framework‐8 (ZIF‐8) was successfully synthesized using ionic liquids as structure‐directing agent under microwave irradiation. Ionic liquids are green solvents with low vapour pressure and good thermal stability. They are appropriate templates for microporous materials and ideal microwave absorbers. The microwave‐assisted ionothermal synthesis applied in this paper was expected to be a promising method for the preparation of microporous materials. Results showed that the as‐synthesized samples (300–500 nm in diameter) could be synthesized in a short time (60 min) and possessed regular morphology, stable structure and high thermal stability (up to 720°C in argon atmosphere). Nitrogen adsorption‐desorption test illustrated that samples produced by microwave heating had a higher surface area. Carbon dioxide adsorption test indicated that the samples synthesized by microwave heating had better carbon dioxide adsorption ability than those by conventional heating. 相似文献
Air pollution, consisting of particles of broad sizes, bioaerosols, and gaseous toxic chemicals, has become a serious hazard to public health. However, conventional fibrous filters have the disadvantages of high air resistance and limited ability to remove toxic gaseous and inhibit harmful microorganisms. Herein, we report a bilayer multifunctional air filter material based on applying electrospinning and needle-punching methods to generate hierarchically structure. Specifically, the air filter consists of keratin-based nanofibers as an upper layer and ZIF-8-modified polyethylene terephthalate/polyethylene needle-punched materials as the substrate. Green, facile, and controllable sonication process involved in thermally-assisted coating method was used to incorporate ZIF-8 onto the substate. The exposed functional groups of keratin and porous ZIF-8 nanocrystals with a high surface area promote the capture capability for small particulate pollutants and toxic gaseous molecules. Meanwhile, the needle-punched substrate with large pores significantly reduces the pressure drop and imparts photocatalytic disinfection performance to the air filter by the excellent photocatalytic characteristic of ZIF-8. This study proposes a novel strategy to fabricate hierarchical multifunctional air filters by combining electrospinning and needle-punching and plays a guidance role in designing and developing keratin-based hybrid materials. 相似文献
Metal‐organic frameworks (MOFs) nanoparticles in combination with a nonionic surfactant (Pluronic L‐121) are used to stabilize dicyclopentadiene (DCPD)‐in‐water high internal phase emulsions (HIPEs). The resulting HIPEs containing the MIL‐100(Fe) nanoparticles (MIL: Materials of Institut Lavoisier) at the interface between the oil‐ and the water‐phases are then cured, and 100 μm thick, fully open, hierarchically porous hybrid membranes are obtained. The properties of the MIL‐100(Fe)@pDCPD polyHIPE membranes are characterized and it is found that up to 14 wt% of the MIL‐100(Fe) nanoparticles are incorporated in the hybrid material resulting in an increase of the microporosity up to 130 m2 g−1. Hybrid membranes show an appealing catalytic activity in Friedel–Crafts alkylation in a batch mode as well as in a flow‐through mode, thereby demonstrating the preserved accessibility of Lewis acidic sites in the MOF nanostructures.