首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
司红颖  陈绍春 《计算数学》2014,36(3):316-324
本文考虑了二阶半线性椭圆问题的Petrov-Galerkin逼近格式,用双二次多项式空间作为形函数空间,用双线性多项式空间作为试探函数空间,证明了此逼近格式与标准的二次有限元逼近格式有同样的收敛阶.并且根据插值算子的逼近性质,进一步证明了半线性有限元解的亏量迭代序列收敛到Petrov-Galerkin解.  相似文献   

2.
We present a discretization theory for a class of nonlinear evolution inequalities that encompasses time dependent monotone operator equations and parabolic variational inequalities. This discretization theory combines a backward Euler scheme for time discretization and the Galerkin method for space discretization. We include set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel to allow a nonconforming approximation of unilateral constraints. As an application we treat parabolic Signorini problems involving the p-Laplacian, where we use standard piecewise polynomial finite elements for space discretization. Without imposing any regularity assumption for the solution we establish various norm convergence results for piecewise linear as well piecewise quadratic trial functions, which in the latter case leads to a nonconforming approximation scheme. Entrata in Redazione il 16 marzo 1998, in versione riveduta il 15 febbraio 1999.  相似文献   

3.
We perform analysis for a finite elements method applied to the singular self-adjoint problem. This method uses continuous piecewise polynomial spaces for the trial and the test spaces. We fit the trial polynomial space by piecewise exponentials and we apply so exponentially fitted Galerkin method to singular self-adjoint problem by approximating driving terms by Lagrange piecewise polynomials, linear, quadratic and cubic. We measure the erroe in max norm. We show that method is optimal of the first order in the error estimate. We also give numerical results for the Galerkin approximation.  相似文献   

4.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

5.
APetrov-GalerkinMethodwithLinearTrialandQuadraticTestSpacesforParabolicConvection-DiffusionProblemsZouYongkui(邹永魁);WuWei(吴微);...  相似文献   

6.
A finite element with new properties of approximation of higher derivatives is constructed, and a method for the construction of a finite element space in the planar case is proposed. The method is based on Yu.N. Subbotin’s earlier results as well as on the results obtained in this paper. The constructed piecewise polynomial function possesses the continuity property and new approximation properties.  相似文献   

7.
Ritz-Galerkin approximations in blending function spaces   总被引:1,自引:0,他引:1  
Summary This paper considers the theoretical development of finite dimensional bivariate blending function spaces and the problem of implementing the Ritz-Galerkin method in these approximation spaces. More specifically, the approximation theoretic methods of polynomial blending function interpolation and approximation developed in [2, 11–13] are extended to the general setting of L-splines, and these methods are then contrasted with familiar tensor product techniques in application of the Ritz-Galerkin method for approximately solving elliptic boundary value problems. The key to the application of blending function spaces in the Ritz-Galerkin method is the development of criteria which enable one to judiciously select from a nondenumerably infinite dimensional linear space of functions, certain finite dimensional subspaces which do not degrade the asymptotically high order approximation precision of the entire space. With these criteria for the selection of subspaces, we are able to derive a virtually unlimited number of new Ritz spaces which offer viable alternatives to the conventional tensor product piecewise polynomial spaces often employed. In fact, we shall see that tensor product spaces themselves are subspaces of blending function spaces; but these subspaces do not preserve the high order precision of the infinite dimensional parent space.Considerable attention is devoted to the analysis of several specific finite dimensional blending function spaces, solution of the discretized problems, choice of bases, ordering of unknowns, and concrete numerical examples. In addition, we extend these notations to boundary value problems defined on planar regions with curved boundaries.  相似文献   

8.
唐跃龙  华玉春 《计算数学》2023,45(1):130-140
本文考虑全离散插值系数有限元方法求解半线性抛物最优控制问题,其中控制变量用分片常数函数逼近,状态变量和对偶状态变量用分片线性函数逼近.对于方程中的半线性项,先用插值系数技巧处理,再用牛顿迭代法求解.通过引入一些辅助变量和投影算子,并利用有限元空间的逼近性质,得到半线性抛物最优控制问题插值系数有限元方法的收敛性结果;数值算例结果验证了理论结果的正确性.  相似文献   

9.
We consider the Cahn-Hilliard equation with a logarithmic free energy and non-degenerate concentration dependent mobility. In particular we prove that there exists a unique solution for sufficiently smooth initial data. Further, we prove an error bound for a fully practical piecewise linear finite element approximation in one and two space dimensions. Finally some numerical experiments are presented.

  相似文献   


10.
We introduce a simple and efficient method to reconstruct an element of a Hilbert space in terms of an arbitrary finite collection of linearly independent reconstruction vectors, given a finite number of its samples with respect to any Riesz basis. As we establish, provided the dimension of the reconstruction space is chosen suitably in relation to the number of samples, this procedure can be implemented in a completely numerically stable manner. Moreover, the accuracy of the resulting approximation is determined solely by the choice of reconstruction basis, meaning that reconstruction vectors can be readily tailored to the particular problem at hand.An important example of this approach is the accurate recovery of a piecewise analytic function from its first few Fourier coefficients. Whilst the standard Fourier projection suffers from the Gibbs phenomenon, by reconstructing in a piecewise polynomial basis we obtain an approximation with root-exponential accuracy in terms of the number of Fourier samples and exponential accuracy in terms of the degree of the reconstruction. Numerical examples illustrate the advantage of this approach over other existing methods.  相似文献   

11.
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro‐differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz‐Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.© 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309–1330, 2016  相似文献   

12.
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.  相似文献   

13.
We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.  相似文献   

14.
We consider the finite element approximation to the solution of a self-adjoint, second-order elliptic boundary value problem in three dimensions over a fully uniform mesh of piecewise linear tetrahedral elements. Although the resulting approximation to the gradient is optimal for functions from the approximating space, it is, however, only O(h). We show how this can be improved by the recovery, from the finite element solution, of an approximation to the gradient, which is pointwise of a higher order of accuracy than that of the gradient of the finite element approximation. This approximation, termed a recovered gradient function, is, thus, superconvergent. The major task of our analysis is the establishing of an (almost) constant bound on the W seminorm of the finite element approximation to a smoothed derivative Green's function. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
本文发展Stokes问题的一个四变量杂交-混合变分方程:应力-速度-压力-拉格朗日乘子.然后发展其有限元方法:对应四变量分别用间断型Raviart—Thomas最低阶元,分片常数元,连续线性元和连续线性元的迹空间.我们获得了稳定性和最优误差界.通过后处理办法,我们得到一个适合于计算的速度-压力格式,该格式可视为“Mini”元方法的一个变形(本文格式中引入了局部投影算子).然而,本文格式关于压力具有“超收敛”结果:得到了压力关于H^1-范的误差界O(h).  相似文献   

16.
In many applications of the finite element method, the explicit form of the basis functions is not known. A well-known exception is that of piecewise linear approximation over a triangulation of the plane, where the basis functions are pyramid functions. In the present paper, the basis functions are displayed in closed form for piecewise polynomial approximation of degreen over a triangulation of the plane. These basis functions are expressed simply in terms of the pyramid functions for linear approximation.  相似文献   

17.
《Applied Mathematics Letters》2007,20(9):1005-1010
A three-field finite element scheme for the explicit iterative solution of the stationary incompressible Navier–Stokes equations is studied. In linearized form the scheme is associated with a generalized time-dependent Stokes system discretized in time. The resulting system of equations allows for a stable approximation of velocity, pressure and stress deviator tensor, by means of continuous piecewise linear finite elements, in both two- and three-dimensional space. Convergence in an appropriate sense applying to this finite element discretization is demonstrated, for the stationary Stokes system.  相似文献   

18.
Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximation errors on elements. Thus, requiring continuity does not downgrade local approximation capability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.  相似文献   

19.
We consider a boundary element (BE) Algorithm for solving linear diffusion desorption problems with localized nonlinear reactions. The proposed BE algorithm provides an elegant representation of the effect of localized nonlinear reactions, which enables the effects of arbitrarily oriented defect structures to be incorporated into BE models without having to perform severe mesh deformations. We propose a one-step recursion procedure to advance the BE solution of linear diffusion localized nonlinear reaction problems and investigate its convergence properties. The separation of the linear and nonlinear effects by the boundary integral formulation enables us to consider the convergence properties of approximations to the linear terms and nonlinear terms of the boundary integral equation separately. For the linear terms we investigate how the degree of piecewise polynomial collocation in space and the size of the spatial mesh relative to the time step affects the accumulation of errors in the one-step recursion scheme. We develop a novel convergence analysis that combines asymptotic methods with Lax's Equivalence Theorem. We identify a dimensionless meshing parameter θ whose magnitudé governs the performance of the one-step BE schemes. In particular, we show that piecewise constant (PWC) and piecewise linear (PWL) BE schemes are conditionally convergent, have lower asymptotic bounds placed on the size of time steps, and which display excess numerical diffusion when small time steps are used. There is no asymptotic bound on how large the tie steps can be–this allows the solution to be advanced in fewer, larger time steps. The piecewise quadratic (PWQ) BE scheme is shown to be unconditionally convergent; there is no asymptotic restriction on the relative sizes of the time and spatial meshing and no numerical diffusion. We verify the theoretical convergence properties in numerical examples. This analysis provides useful information about the appropriate degree of spatial piecewise polynomial and the meshing strategy for a given problem. For the nonlinear terms we investigate the convergence of an explicit algorithm to advance the solution at an active site forward in time by means of Caratheodory iteration combined with piecewise linear interpolation. We consider a model problem comprising a singular nonlinear Volterra equation that represents the effect of the term in the BE formulation that is due to a single defect. We prove the convergence of the piecewise linear Caratheodory iteration algorithm to a solution of the model problem for as long as such a solution can be shown to exist. This analysis provides a theoretical justification for the use of piecewise linear Caratheodory iterates for advancing the effects of localized reactions.  相似文献   

20.
In this paper, we present a finite volume element scheme for a kind of two dimensional semiconductor device simulation. A general framework is developed for finite volume element approximation of the semiconductor problems. We construct a fully discrete finite volume element scheme based on triangulations with a piecewise linear finite element space and a general type of control volume. Optimal-order convergence in H 1-norm is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号