首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以实验合成的联吖叮氮氧自由基分子为母体, 设计了7个自由基分子. 采用密度泛函理论(DFT) UB3LYP/6-31g(d,p)方法对这些自由基分子不同自旋态的稳定性和非线性光学(NLO)系数进行计算. 结果表明, 联吖叮氮氧自由基分子及其衍生物三重态为稳定基态, 符合自旋极化规则. 引入给吸电子取代基使自由基体系的极化率αs与二阶超极化率γs值有所增大, 且基团的给吸电子能力越强, αs和γs值增加越明显; 对于一阶超极化率βtot, 自由基体系处于单重态时, 取代基的影响较大. 所有自由基分子三重态的NLO系数都小于单重态, 表明可以通过控制体系的自旋多重度来调节体系的NLO性质.  相似文献   

2.
运用密度泛函理论(DFT) UB3LYP和有限场(FF)方法, 探讨了6,6’-二氧-3,3’-二四联氮自由基及其衍生物构象变化对非线性光学性质的影响, 分析了自由基分子极化率、二阶超极化率对构象、自旋多重度的依赖关系. 结果表明, 不同构象下各体系有效交换积分值都小于零, 自由基间表现为反铁磁性耦合. 各体系单三态不同构象时极化率α值的变化很小, 且不同构象时单重态的α值都大于三重态. 在构象变化过程中, 体系(a)和(b)单重态的二阶超极化率均为负值(体系(a)的45°和135°除外), 且绝对值都小于三重态的二阶超极化率值, 体系(c)的单三重态二阶超极化率值均为正值, 且在分子接近平面构型时, 三重态的γ值大于单重态. 不同的取代基R, 对体系的构型、极化率和二阶超极化率的影响也不同.  相似文献   

3.
采用密度泛函理论(DFT)结合有限场(FF)方法,对不同共轭桥连接的四氰代二甲基苯醌(TCNQ)开壳层和闭壳层电子态的非线性光学(NLO)系数进行计算,并以乙烯桥为例讨论共轭链长度与NLO性质的关系.结果表明:开壳层体系的极化率和二阶超极化率值都大于闭壳层体系,且共轭桥的共轭性越强,体系的极化率和二阶超极化率越大;在自由基体系中,单重态的二阶超极化率随双自由基成分y和自旋多重度的增加而增大.体系的共轭链增长,BLA(BondLength Alternation,共轭分子中相邻单、双键键长差的平均值)逐渐减小,双自由基成分y逐渐增大,体系的二阶超极化率也逐渐增大.  相似文献   

4.
采用量子化学UMP2/6-31G(d,p)方法优化双噻唑苯二聚体自由基分子的几何结构,以0.05nm为单位步长拉长与缩短2分子片之间的距离,选取5个点,采用DFTUB3LYP/6-31G(d,p)方法,对双噻唑苯二聚体自由基分子的极化率和二阶超极化率进行理论计算.结果表明,自由基体系的单重态为相对稳定状态.在完全重叠的体系中,在单、三重态时极化率都随着2分子片间距离的增大而增加;三重态时二阶超极化率的绝对值随着2分子片间距离的增大而增大.部分重叠的体系,单重态时极化率随2分子片距离的增大而减小;三重态时,二阶超极化率的绝对值随着2分子片间距离的增大而增大.  相似文献   

5.
采用密度泛函理论(DFT)方法研究了系列含绿色荧光蛋白发色团双自由基分子光学异构体的几何结构、极化率(αs)和第一超极化率(βtot).结果表明,引入电子给受体取代基使分子的极化率增大,而对第一超极化率有不同影响.对于光照前的反式结构,引入电子受体βtot值增加,且βtot值随取代基吸电子能力的增强而增大;引入电子给体βtot值降低,且βtot值随取代基给电子能力的增强而减小.当分子变成相应的顺式结构时,其βtot值变化趋势与反式结构的结果正好相反.光异构化前后分子的βtot值变化不同,引入电子受体使顺式结构的βtot值比反式结构的小,其中―NO2使顺式结构的βtot值减小为反式结构的1/6;引入电子给体使反式结构的βtot值比顺式结构的小,其中―NH2使反式结构的βtot值减小为顺式结构的1/6.从而,光异构化起到调节非线性光学(NLO)响应的作用.  相似文献   

6.
采用密度泛函理论(DFT)的UB3LYP(B3LYP)/6-31+G**方法对双咪唑苯和双三咪唑苯双自由基及其衍生物几何结构进行优化,并结合有限场(FF)方法计算这些体系的非线性光学(NLO)系数.结果表明,引入给、受体取代基都能使体系的极化率α和二阶超极化率γ增大.在双自由基体系中,引入给体NH2的α和γ值大于引入受体NO2的值,与闭壳层体系中结果相反.分析自由基成分和电荷对体系的二阶超极化率γ影响的结果表明,处于中间双自由基成分的分子比相似共轭性的闭壳层分子有更大的二阶超极化率γ;带电荷的双自由基体系引入给、受体之后,与中性自由基体系相比具有更大的二阶超极化率γ.  相似文献   

7.
采用密度泛函理论(DFT)方法对系列具有D-A-D(D')型结构的邻位碳硼烷三元体系的电子结构、第一超极化率和电子光谱等性质进行研究.结果表明,碳硼烷具有独特的缺电子特征,可以作为有效的吸电子基团,与其桥联不同的供电子取代基Ar,形成三元体系的电荷转移方向是由Ar基团到碳硼烷.随着Ar基团供电子能力的增强,体系相应的第一超极化率值增大,其中分子7(Ar=N,N-二甲基苯)的βtot值(39197 a.u.)约为分子1(Ar=间三氟甲基苯,640 a.u.)的61倍.分子的电子光谱随Ar基团供电能力的增强发生红移,并采用二级能级公式对分子的第一超极化率规律给予了解释.  相似文献   

8.
采用密度泛函理论(DFT)方法研究了碗状钒多酸阴离子[V12O32]4-、其碱金属阳离子衍生物[V12O32M]3-(M=Li,Na,K)及质子化衍生物的几何结构和二阶非线性光学(NLO)性质.结果表明,碱金属阳离子M+的引入对体系的几何结构和第一超极化率(β0)影响很小;而质子化的位置和取向对体系的几何结构和第一超极化率均有较大影响,与钒多酸阴离子[V12O32]4-相比,碗中部桥氧质子化体系的β0值增大,且比碗口处及碗底处桥氧质子化体系的β0值大270~400 a.u.  相似文献   

9.
采用密度泛函理论(DFT) UB3LYP方法, 在6-31g(d)水平上对2,2’-(1,2-乙炔基-4,1-亚苯基)双[4,4’,5,5’-四氢]咪唑氧自由基分子及其异构体的自旋耦合性质进行分析, 并结合有限场(FF)方法计算它们的非线性光学(NLO)系数, 以探讨咪唑氧环在共轭链不同位置时体系的自旋耦合规律和NLO系数. 结果表明, 所有体系基态自旋符合自旋极化规则, 它们的极化率随自旋多重度的增加而减小; 一阶超极化率因受分子对称性影响, 对称性不同其一阶超极化率的变化也不同; 二阶超极化率呈现随着自旋多重度的增加而增加的趋势. 从理论上探讨这些自由基分子自旋耦合规律与NLO活性的关系, 为有机自由基NLO材料的分子设计与实验研究提供一定的理论依据.  相似文献   

10.
采用密度泛函理论(DFT)方法对联吡啶Ru~(Ⅱ/Ⅲ)配合物的几何结构、氧化还原性质、UV-Vis光谱及二阶非线性光学(NLO)性质进行计算.研究结果表明,醌基的引入能够有效增大第一超极化率(β_(tot))值,但醌基在氮苯基上位置的改变对β_(tot)值影响不大.分子轨道和自旋密度分布分析结果表明,金属Ru~Ⅱ和副配体均能成为氧化中心,并且氧化中心位置不同,会导致配合物氧化态的电荷转移形式产生差别,进而改变氧化态的β_(tot)值.氧化态配合物1b和2b的β_(tot)值减小,而配合物3b和4b的β_(tot)值显著增大,超瑞利散射方法计算的第一超极化率(β_(HRS))值也符合此规律.含时密度泛函理论(TD-DFT)结果表明,配合物本征态主要是金属到配体的电荷转移(MLCT/ML'CT),而氧化态则是配体到金属的电荷转移(LMCT/L'MCT),给、受体发生明显改变.因此,通过改变副配体的种类及氧化还原反应,可有效调节这类联吡啶Ru~(Ⅱ/Ⅲ)配合物的二阶NLO响应.  相似文献   

11.
采用密度泛函理论(DFT)B3LYP/6-31G*优化一系列以芳环为桥联基团,1,3-二硫杂环戊二烯为供电子基团,丙二氰为吸电子基团的D-π-A型分子的几何结构,在此基础上对分子的极化率和第一超极化率进行计算.结果分析表明,桥联苯环数的增加,供电子基团(—OCH3)的引入及共轭桥的增长对分子的几何构型影响很小,但能使分子的二阶非线性光学(NLO)系数增加,且分子的最大吸收波长发生红移.甲氧基的引入或共轭桥的增长,分子的前线分子轨道能级差减小,TD-DFT计算表明分子深层占有轨道与空轨道之间的电子跃迁对二阶NLO效应也有较明显贡献.  相似文献   

12.
设计合成了2种聚芳香炔铂共轭高分子给体(聚合物1, 3)和一种芳香炔铂共轭高分子受体(聚合物2), 并对其光物理特性进行了研究. 聚合物3被激发后, 与聚合物2之间既可以发生激发单重态-单重态的电子转移, 也可以发生激发三重态-三重态的电子转移. 分别对聚芳香炔铂共轭高分子给体和芳香炔铂共轭高分子受体组成的太阳能电池的特性进行了研究. 其弱的光伏特性归因于明显的激发单重态-单重态电子转移过程及此类高分子较低的导电特性. 电致发光实验结果表明, 聚合物3的阳离子自由基主要由其激发三重态决定.  相似文献   

13.
采用密度泛函理论(DFT)B3LYP/6-31G*方法优化了一系列含有噻唑生色团的Y-型有机杂环分子的几何构型, 在此基础上结合有限场(FF)方法和含时密度泛函理论(TD-DFT)对分子的非线性光学(NLO)活性和电子光谱进行计算分析. 结果表明, 这些分子具有A-π-D-π-A(A: 受体, D: 给体)结构, 分子基态偶极矩、极化率和二阶NLO系数(β)随支链共轭桥的增长及生色团共轭效应的增大而增大. 同时, 该系列有机杂环分子的二阶极化率总的有效值(βtot)与其前线分子轨道能级相关, 分子的前线分子轨道能级差越小, βtot值越大.  相似文献   

14.
采用密度泛函理论(DFT)方法对二芳基氨(硼)-π-十二顶点碳硼烷三元化合物的结构及二阶非线性光学(NLO)性质进行计算.结果表明,化合物共轭桥长度及二芳基氨(硼)对化合物偶极矩的影响较小.随着分子共轭桥的增长,分子的电子空间范围R2增大,从而使极化率和第一超极化率增大.通过分析化合物的电子光谱和对应的分子轨道组成可知,分子中电荷转移主要发生在二芳基氨(硼)和π-桥之间,碳硼烷的贡献较少.二芳基氨和二芳基硼的供电子能力差异可以调节分子的二阶NLO响应.  相似文献   

15.
以苯并噻二唑分子为母体,设计了5个系列的衍生物,采用AM1半经验量子化学方法,研究了共轭π桥的不同增长方式和不同推拉电子基团对分子的电子结构及非线性光学性质的影响.结果表明:共轭链较短时,分子的二阶极化率和三阶极化率与共轭链长的线性相关性较好;而当共轭链较长时,分子的二价极化率和三阶极化率随着共轭链的增长而呈起伏性变化;与三氰基呋喃相比,三硝基呋喃对非线性极化率的影响更大;部分目标分子的一阶极化率α与Δμ·ΔE-1、二阶极化率β与α·ΔE-1、三阶极化率γ与α·ΔE-2和β·ΔE-1都有较好的相关性.  相似文献   

16.
采用密度泛函理论(DFT)方法对卟啉-碳硼烷-硼亚甲基二吡咯(BODIPY)三元化合物的几何结构、 吸收光谱及二阶非线性光学(NLO)特性进行计算分析. 结果表明, V型化合物的静态第一超极化率(βtot)大于相应直线型化合物, 且延长共轭链可提高体系的βtot. 分析体系的电子密度差分图得出, 化合物氧化还原态的电荷转移方式与本征态相比发生了改变, 从而使其二阶NLO性质发生明显变化. 含频第一超极化率计算结果表明, 在一定范围内频率对化合物有较小的色散效应. 因此, 通过延长二维化合物的共轭链及氧化还原反应, 可以有效调控其二阶NLO响应.  相似文献   

17.
采用密度泛函理论(DFT)CAM-B3LYP方法对系列7,10,12顶点Fe(Ⅱ)碳硼烷与1,2,4,5-Me4C6H2(dur1),1,2,3,4-Me4C5H(dur2)形成的夹心配合物的非线性光学(NLO)性质进行了计算分析.结果表明,Fe(Ⅱ)碳硼烷的顶点数和硝基的取代位置影响分子的几何构型,从而影响分子的NLO性质;Fe(Ⅱ)碳硼烷夹心配合物的偶极矩与极化率随碳硼烷的顶点数增加而增大;10顶点Fe(Ⅱ)碳硼烷分子的前线分子轨道能级差较小,其第一超极化率βtot值大于12及7顶点Fe(Ⅱ)碳硼烷分子;硝基与Fe(Ⅱ)处于对位时,其βtot值大于未取代分子;硝基与Fe(Ⅱ)处于邻位时,βtot值较未取代分子小;在此类Fe(Ⅱ)碳硼烷夹心配合物中,碳硼烷既可以作电子给体,也可以作电子受体.  相似文献   

18.
采用MP2方法优化得到Li(HF)n(n=2~4)体系的三个环型结构. 使用高水平的从头算方法MP2/6-311++G(3df,3pd)计算了它们的偶极矩μ0、极化率α0和一阶超极化率β0. 得出了大的一阶超极化率的变化规律, 并揭示出额外电子是引起大一阶超极化率的主要原因.  相似文献   

19.
羧脒盐桥介导的萘-二苯酮单重态能量传递研究   总被引:1,自引:0,他引:1  
韩镭  李迎迎  曾毅  陈金平  李嫕 《化学学报》2009,67(13):1481-1486
设计构建了以羧脒盐桥联接的二苯酮和萘超分子体系, NA-(脒基-羧基)-BP和NA-(羧基-脒基)-BP, 以及相应的模型体系. 稳态和时间分辨荧光光谱研究表明, 置于羧脒盐桥两端的萘和二苯酮基团之间可以发生有效的单重态能量传递, 超分子体系NA-(脒-羧)-BP (NA-Am/BP-COOH=1/1)和NA-(羧-脒)-BP (NA-COOH/BP-Am=1/1)中单重态能量传递效率分别为0.998和0.970, 速率常数分别为6.8×1010和1.5×1010 s-1. 推断羧脒盐桥介导了超分子体系中单重态能量传递过程并具备方向性性质, 单重态能量传递“通过键”以电子交换机制进行.  相似文献   

20.
以N,N,N′,N′-四甲基联苯二胺、2,6-二甲氧基萘和2,7-二甲氧基萘为光敏剂,在正己烷溶液中实现了双环[2,2,1]-2,5-庚二烯到四环[2,2,1,02,6,03,5]庚烷的异构化。测定了反应的量子产率。讨论了反应机理。通过激发态的光敏剂与二烯之间的电子转移反应,形成单重态和三重态处于平衡状态的离子自由基对中间体。处于溶剂笼中的三重态离子自由基对经电子反传,产生激发三重态二烯。最后该激发态二烯经分子内[2+2]环合加成反应异构化为四环烷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号