首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
脱氧核糖核酸电分析化学研究进展   总被引:15,自引:0,他引:15  
黄海珍  杨秀荣 《分析化学》2002,30(4):491-497
就DNA电分析化学研究及其应用方面进行综述,主要叙述了DNA的各种电分析化学方法,以及DNA电化学传感器的原理,应用以及发展,本文引用文献77篇。  相似文献   

2.
对DNA电化学传感器的设计和应用进行了综述。介绍了其基本原理、探针固定技术、杂交指示剂的选择及其在基因诊断、药物分析、环境监测等方面的应用,对发展方向作了概括。  相似文献   

3.
新型磁性纳米电化学DNA生物传感器的研究   总被引:4,自引:2,他引:2  
利用高分子磁性纳米粒子有效地将磁性分离、富集和化学修饰电极的电化学检测相结合,构建以亚甲基蓝为嵌入式杂交指示剂的电化学DNA生物传感器.此传感器对碱基错配的序列有较好的选择性.传感器对目标序列的响应在1×10-13~1×10-6 mol/L范围内呈线性关系;检出限为4.3×10-14 mol/L.这种新型的高分子磁性纳米粒子电化学DNA生物传感器具有高的灵敏度,其线性范围宽,成本低,为DNA的痕量分析提供了一种新的思路.  相似文献   

4.
脱氧核糖核酸电化学传感器的原理及其应用   总被引:5,自引:0,他引:5  
陆晓军  鞠熀先 《分析化学》2003,31(1):110-115
对电化学DNA传感器的组成及其在DNA损伤研究、环境污染监控、病原基因检测、基因疾病诊断和药物机理分析等方面的进行了总结,并对其发展趋势进行了评述。  相似文献   

5.
用电化学氧化法使玻碳电极表面氧化生成羧基,利用偶联活化试剂将1.0G树状高分子(PAMAM)固定在玻碳电极表面,并通过共价结合固定ssDNA。以亚甲基蓝为指示剂,采用循环伏安法、示差脉冲伏安法等电化学方法对DNA电化学生物传感器进行了表征。结果发现,通过亚甲基蓝与双链dsDNA作用的氧化还原电流的变化,可以识别和定量检测溶液中互补的ssDNA片段。经过条件优化,本法测定DNA的浓度线性范围为2×10-9~2×10-7mol/L,检出限为1×10-9mol/L。  相似文献   

6.
将石墨粉、固体石蜡和硬脂酸按一定比例混合制得表面富含羧基的碳糊电极,然后在电极表面组装荷正电的铝离子膜。在硬脂酸铝离子膜上进行DNA探针的固定和与目标基因的杂交。以亚甲蓝为杂交指示剂,用循环伏安法优化了DNA的固定和杂交条件。应用该电化学生物传感器以微分脉冲伏安法对转基因玉米外源BAR基因片段进行了检测,结果令人满意。  相似文献   

7.
血清样品中乙肝病毒的DNA电化学传感器检测   总被引:6,自引:0,他引:6  
利用自组装单分子膜技术,将巯己基修饰的具有乙肝病毒(HBV)DNA序列特异性的单链DNA探针固定在金电极表面,制得DNA电化学传感器;以电活性的Hoechst 33258为指示剂,考察了该传感器对血清样品中乙肝病毒DNA的响应;探讨DNA电化学传感器在临床检测中的应用;将传感器法与荧光聚合酶链反应(PCR)法进行对比,两者的分析结果具有一致性。  相似文献   

8.
电化学DNA生物传感器*   总被引:1,自引:0,他引:1  
张炯  万莹  王丽华  宋世平  樊春海 《化学进展》2007,19(10):1576-1584
对特异DNA序列的检测在基因相关疾病的诊断、军事反恐和环境监测等方面均具有非常重要的意义,DNA传感器的研究就是为了满足对特异DNA序列的快速、便捷、高灵敏度和高选择性检测的需要。近年来涌现出了多种传感策略,根据检测方法的不同可以大致分为光学传感器、电化学传感器、声学传感器等。由于电化学检测方法本身所具有的灵敏、快速、低成本和低能耗等特点,电化学DNA传感器已成为一个非常活跃的研究领域并在近几年中得到了快速发展。本文概括了近年来在DNA传感器的重要分支——电化学DNA传感器领域内的一些重要进展,主要包括DNA探针在传感界面上的固定方法和各种电化学DNA杂交信号的检测方法。  相似文献   

9.
构建了以3种不同电活性物质(铁氰化钾平衡电对、亚甲基蓝和六氨合钌)为电化学信号探针,检测乳腺癌基因片段(乳腺癌DNA)的电化学传感器。利用吸附作用将探针ss DNA固定于金纳米-多壁碳纳米管-Nafion复合纳米材料修饰金电极表面,制备了DNA电化学传感器。采用循环伏安法、电化学阻抗法和微分脉冲伏安法,对DNA电化学传感器进行表征和定量分析。实验结果表明,在5 mmol/L K3[Fe(CN)6]-5mmol/L K4[Fe(CN)6]平衡电对电化学探针检测液中,乳腺癌DNA的线性范围为0.1~500.0 nmol/L,其检出限(S/N=3)为0.03 nmol/L。以20μmol/L亚甲基蓝为电化学探针检测液时,乳腺癌DNA的线性范围为1.0~500.0 nmol/L,检出限为0.3 nmol/L。利用50μmol/L六氨合钌电化学探针检测时,乳腺癌DNA的线性范围为1.0~500.0 nmol/L,检出限为0.3 nmol/L。3种电化学探针中,利用铁氰化钾平衡电对探针检测乳腺癌DNA的检出限最低,线性范围最宽。该传感器可用于其他DNA的检测分析。  相似文献   

10.
报道了基于纳米金-Nafion修饰金电极检测人端粒DNA的电化学阻抗传感器。将纳米金与Nafion混合超声得到纳米金-Nafion纳米材料,将此纳米材料滴涂于金电极表面获得纳米金-Nafion修饰电极。再将探针人端粒ss DNA滴涂在修饰电极上制备电化学阻抗传感器。利用扫描显微镜对纳米材料的形貌进行了表征。利用循环伏安法和电化学阻抗法对传感器进行了表征及目标人端粒DNA的定量测定。在最优化实验条件下,电化学阻抗传感器响应信号(ΔRet)与目标人端粒DNA浓度的对数(lgc)在0.001~1.0 nmol/L范围内呈良好线性关系。检出限为3.0 pmol/L。对0.5 nmol/L的目标人端粒DNA 7次平行测定,相对标准偏差RSD为3.5%。  相似文献   

11.
特定序列脱氧核糖核酸电化学生物传感器进展   总被引:16,自引:0,他引:16  
杨丽菊  彭图治 《分析化学》2001,29(3):355-360
对当今电分析化学中的研究热点之一-脱氧核糖核酸(DNA)的电化学生物传感技术的最新进展进行了综述,评述了其发展前景。  相似文献   

12.
于力华  吴爱国  王宏达  李壮  索全伶 《分析化学》2001,29(12):1470-1477
评述了近年来原子力显微镜和扫描隧道显微镜应用于脱氧核糖核酸研究领域的样品制备过程.主要内容涉及基底的选择与处理、样品的固定与展开方法、优缺点以及改进过程.  相似文献   

13.
茜素红S与脱氧核糖核酸相互作用的电化学研究   总被引:5,自引:0,他引:5  
牛淑妍  张书圣  马立波  焦奎 《分析化学》2004,32(9):1234-1236
研究了茜素红S在玻碳电极上的电化学行为,根据茜素红S与DNA作用的伏安曲线、紫外.可见光谱及溴化乙锭对茜素红S与DNA作用的影响,认为茜素红S与DNA发生了嵌插作用。考察了温度、时间及pH值对二者作用的影响。  相似文献   

14.
核黄素与脱氧核糖核酸相互作用的电化学和光谱法研究   总被引:4,自引:0,他引:4  
倪永年  杜姗 《分析化学》2006,34(5):659-662
在实验条件接近人体生理环境的pH7.4的Tris-HCl缓冲溶液中,分别采用电化学方法、紫外光谱法及荧光法并利用中性红作电化学探针,研究了核黄素和小牛胸腺DNA的相互作用。随着DNA浓度逐渐增加,核黄素的峰电流减小,峰位正移;紫外光谱产生减色效应;核黄素的荧光发生猝灭以及核黄素和中性红竞争与DNA相互作用等,采用几种方法的实验结果都表明两者能发生嵌插结合;多种计算方法得到两者作用的结合位点数为1,结合常数达到105(mol/L)-1。  相似文献   

15.
阐述了三螺旋DNA的发展和最新动态,并从3个方面展开评述:(1)三螺旋DNA稳定性的研究。三螺旋DNA的稳定性不仅取决于寡聚核苷酸的内在结构,还受外界环境如溶液的pH值、阳离子的种类和价态、DNA分子嵌入试剂和共聚物等的影响;(2)三螺旋DNA的应用。三螺旋DNA的形成为基因操纵和基因疗法提供了新方法,它在抑制DNA转录、复制、基因定点诱变、定点切割和诱导基因重组等方面有重要的应用前景;(3)三螺旋DNA的检测方法,包括紫外-可见吸收光谱法、荧光分析法、原子力显微术和顺磁共振谱等。  相似文献   

16.
多壁碳纳米管/纳米Ag-TiO_2膜DNA电化学生物传感器   总被引:2,自引:2,他引:0  
基于多壁碳纳米管/纳米Ag-TiO2复合膜制备了高灵敏度的DNA电化学生物传感器。将Ag-TiO2复合物与适量分散于N,N-二甲基甲酰胺中的多壁碳纳米管(MWNT)相混合,形成均匀稳定的混合溶液,将其滴涂于裸碳糊电极表面,制得MWNT/Ag-TiO2修饰碳糊电极。碳纳米管大的比表面积和良好的电子传递性能与Ag-TiO2纳米复合物良好的生物相容性和对DNA极好的吸附能力的协同作用,显著提高了DNA探针的固载和DNA杂交的检测灵敏度。应用循环伏安法和电化学交流阻抗谱分别对传感膜的制备和DNA的固定与杂交进行了表征。以电化学交流阻抗谱法对转基因植物外源草丁膦乙酰转移酶基因片段进行了检测,线性范围为1.0×10-11~1.0×10-6mol/L,检出限为3.12×10-12mol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号