首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
蔡向华  郑婉华  马小涛  任刚  夏建白 《中国物理》2005,14(12):2507-2513
Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.  相似文献   

2.
Yogita Kalra  R. K. Sinha 《Pramana》2008,70(1):153-161
In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.   相似文献   

3.
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.  相似文献   

4.
Using the revised plane wave method, we have calculated the photonic band structures of 2D metallic photonic crystals composed of parallel metallic rods in air background and air holes drilled in metal background. We discuss the maximization of gap-to-midgap ratio as a function of scatterer parameters with different shapes and orientations in three types of lattices.  相似文献   

5.
Na Zhu  Wu Liu  Ning Zhang  Jie Wang  Chao Cheng 《Optik》2011,122(18):1625-1627
The photonic crystal is an artificial material with periodic dielectric constant and the key factor to preserve their band features is its periodicity. When the number of periods of photonic crystal is decreased the photonic band gap cannot prevent the light of the corresponding frequencies from propagating in photonic crystal, in another word, photonic band gap will be failure. The minimum periods of photonic crystal device which can keep photonic band gap effective in miniaturization process is analyzed, the transmittance spectrum is calculated by the Finite-difference time-domain algorithm (FDTD) [1], the minimum periods is got in the simulation and the reason which affects the minimum periods is analyzed in this paper.  相似文献   

6.
沈娟娟  何兴道  刘彬  李淑静 《物理学报》2013,62(8):84213-084213
提出了一种新型的非对称性散射体的二维六角晶格光子晶体结构–-太极形介质柱光子晶体. 利用平面波展开法从理论研究这种光子晶体结构的能带特性以及结构参数对完全禁带的影响. 研究表明:散射体对称性的打破, TE模和TM模能带宽度和数目都会有所增加, 有益于获得更宽的完全禁带以及更多条完全禁带.通过参数优化, 发现在ε = 17, R=0.38 μm, r=0.36R, θ = 0° 时, 获得最大完全带隙宽度0.0541(ωa/2πc); 在ε = 16, R=0.44, r=0.2R, θ = 0°时, 光子晶体完全带隙数目最多达到8条. 关键词: 光子晶体 禁带 平面波展开  相似文献   

7.
采用一种新的平面波展开法研究金属光子晶体的带结构,即在传统平面波展开法的基础上,将“原问题”拓展,引入一个“新问题”,通过求解“新问题”得到“原问题”的带结构,并论证了它们之间的关系.为了准确求解“新问题”,引入辅助函数,将其色散关系等价为一个积分微分本征方程,求解这个本征方程得到“新问题”的带结构,从而由此导出“原问题”的带结构.最后,以正方晶格二维金属光子晶体为例,进行数值计算,得到了满意的结果. 关键词: 金属光子晶体 平面波展开法 带结构 正方晶格  相似文献   

8.
沈林放  何赛灵  吴良 《物理学报》2002,51(5):1133-1138
应用等效介质理论,提出了一种理论分析光子晶体的新平面波展开法,通过计算光子晶体的能带作收敛性分析,结果表明,新方法具有精度高、收敛快的优点,明显优于目前通用的二种平面波展开法;与已有的理论方法相比,新平面波展开法更适用于分析任意介电分布的高维光子晶体结构 关键词: 光子晶体 平面波展开法 禁带  相似文献   

9.
Qiaofen Zhu  Dayong Wang 《Optik》2011,122(4):330-332
The photonic band gaps in one-dimensional photonic crystals (PCs) are theoretically investigated. A new method to broaden the photonic band gaps is introduced. Based on the similar method, a kind of photonic crystals is constructed to generate photonic band gaps with proportioned central frequencies. This technology can be used for designing nonlinear PCs for harmonic generation.  相似文献   

10.
用时域有限差分法研究了电磁波在等离子体光子晶体中的传播特性。数值模拟中使用完全匹配层吸收边界条件,计算了电磁波通过等离子体光子晶体的反射和透射系数。讨论了等离子体密度、等离子体温度、介电常数比和引入缺陷层对等离子体光子晶体光子带隙的影响。  相似文献   

11.
The tunable two-dimensional photonic crystals band gap, absolute photonic band gap and semi-Dirac point are beneficial to designing the novel optical devices. In this paper, tunable photonic band gaps structure was realized by a new type two-dimensional function photonic crystals, which dielectric constants of medium columns are functions of space coordinates. However for the two-dimensional conventional photonic crystals the dielectric constant does not change with space coordinates. As the parameter adjustment, we found that the photonic band gaps structures are dielectric constant function coefficient, medium columns radius, dielectric constant function form period number and pump light intensity dependent, namely, the photonic band gaps position and width can be tuned. we also obtained absolute photonic band gaps and semi-Dirac point in the photonic band gaps structures of two-dimensional function photonic crystals. These results provide an important theoretical foundation for design novel optical devices.  相似文献   

12.
中红外波段硅基两维光子晶体的光子带隙   总被引:4,自引:0,他引:4       下载免费PDF全文
利用电化学腐蚀的方法制备了大多孔硅两维光子晶体.结构图形对称性为正方格子,其结构参数为正方形晶格周期a=44μm,正方形空气柱的边长l=2μm.并用显微红外光谱仪表征了光谱性质,揭示了所制备两维光子晶体样品的中红外波段光子的反射特性. 关键词: 光子晶体 光子带隙 反射谱 时域有限差分法  相似文献   

13.
刘会  刘丹  赵恒  高义华 《物理学报》2013,62(19):194208-194208
采用平面波展开法, 系统研究了空气环型二维光子晶体的完全光子带隙随结构参数变化而改变的规律, 并将其与普通的空气孔型和介质柱型二维光子晶体的完全带隙进行了比较. 研究表明: 空气环型二维光子晶体不仅可以获得更宽的完全带隙, 而且, 当介质折射率较低时, 其可以获得普通空气孔型和介质柱型二维光子晶体在低折射率条件下所无法获得的完全带隙. 关键词: 空气环型二维光子晶体 完全带隙 平面波展开法  相似文献   

14.
In this paper we investigate, by the plane wave expansion method and an analytical model, the temperature effect on the photonic band gap fiber, and we report on a numerical demonstration of a temperature sensor based on the photonic band gap (PBG) shift in a solid core photonic crystal fiber (PCF) infiltrated with a high refractive index oil. The bandwidth and the position of the central wavelength of the band gap are the parameters of interests for our temperature sensing purpose. Simulation results were found to be in excellent agreement with the refractive index scaling law and the highest sensitivity of 3.21?nm/°C was achieved, and it will be even higher than the grating based sensors written in PCFs with similar structure.  相似文献   

15.
Two-dimensional (2D) photonic crystals (PCs) of a square lattice with dielectric hybrid rods in air are proposed; these PCs consist of a square rod at the center of the unit cell and additional circular rods with their outermost edges against the middle of each side of the lattice unit cell. The band gap structures of PCs can be tailored and optimized by rotating the square rods and adding circular rods to the lattice unit cell. The variation of bands near the complete photonic band gap boundaries, due to some specific modes, is sensitive to certain structural parameters of the system. The results can be understood by analyzing the spatial energy distribution of the electromagnetic fields. Based on such a field analysis, a novel interpretative model is proposed. The PC can be fabricated easily and operated in the microwave region and, hence, should be suitable for applications in new microwave devices.  相似文献   

16.
Calculations for the relative width (Δω/ω0) as a function of refractive index and relative radius of the photonic band gap for the fcc closed packed 3-D dielectric microstructure are reported and comparison of experimental observations and theoretical predictions are given. This work is useful for the understanding of photonic crystals and occurrence of the photonic band gap.  相似文献   

17.
含有理想导体的准分形结构光子晶体的能带   总被引:3,自引:0,他引:3       下载免费PDF全文
李岩  郑瑞生  冯玉春  牛憨笨 《物理学报》2004,53(9):3205-3210
用时域有限差分方法计算了一组具有相似几何结构且包含理想金属材料的准分形光子晶体的能带.数值计算结果表明,这种准分形结构光子晶体具有绝对带隙,且带隙的宽度会 随着分形级数的增大而增大.同时,随着级数的增大,其能带在整体地趋向于高频端的同时,能带会被快速拉直而形成孤立的能级. 关键词: 光子晶体 带隙 分形  相似文献   

18.
一维等离子体光子晶体的带隙研究   总被引:2,自引:0,他引:2  
采用时域有限差分方法(FDTD),结合等离子体计算中的分段线性电流密度卷积技术(PLJERC)对一维等离子体光子晶体(1D-PPC)进行了数值模拟,给出了微分高斯脉冲在一维等离子体光子晶体中的传播过程。计算得到的带隙结构与K-P模型方法的结果一致。计算并分析了等离子体频率、介质介电常数、等离子体-介质层的厚度比以及周期厚度对一维等离子体光子晶体带隙结构的影响。  相似文献   

19.
介绍群论在光子晶体带隙平面波展开法计算中的应用,推导了改进后的算法公式.通过计算实例的比较,显示了群论应用对算法内存需求空间及计算时间的减少. 关键词: 群论 光子晶体 光子带隙 平面波展开  相似文献   

20.
In this paper, the properties of the omnidirectional photonic band gap (OBG) realized by one-dimensional (1D) photonic crystals (PCs) with a staggered structure which is composed of plasma and isotropic dielectric layer have been theoretically studied by the transfer matrix method (TMM). From the numerical results, it has been shown that such OBG is insensitive to the incident angle and the polarization of electromagnetic wave (EM wave), and the frequency range and central frequency of OBG can be effectively controlled by adjusting the plasma frequency, the average thickness of plasma layer, the average thickness of dielectric layer and staggered parameters, respectively. The frequency range of OBG can be notably enlarged with increasing the plasma frequency, average thickness of plasma layer, respectively. Moreover, the bandwidth of OBG can be narrowed with increasing the average thickness of dielectric layer. Changing staggered parameters of dielectric and plasma layer means that the OBG can be tuned. It is shown that 1D plasma dielectric photonic crystals (PPCs) with such staggered structure have a superior feature in the enhancement of frequency range of OBG compared with the conventional 1D binary PPCs. This kind of OBG has potential applications in filters, microcavities, and fibers, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号