首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tetracationic supramolecular helicate, [Fe2L3]4+ (L = C25H20N4), with a triple-helical architecture is found to induce the formation of a three-way junction (3WJ) of deoxyribonucleotides with the helicate located in the center of the junction. NMR spectroscopic studies of the interaction between the M enantiomer of the helicate and two different oligonucleotides, [5'-d(TATGGTACCATA)]2 and [5'-d(CGTACG)]2, show that, in each case, the 2-fold symmetry of the helicate is lifted, while the 3-fold symmetry around the helicate axis is retained. The 1:3 helicate/DNA stoichiometry estimated from 1D NMR spectra supports a molecular model of a three-way junction composed of three strands. Three separate double-helical arms of the three-way junction are chemically identical giving rise to one set of proton resonances. The NOE contacts between the helicate and DNA unambiguously show that the helicate is fitted into the center of the three-way junction experiencing a hydrophobic 3-fold symmetric environment. Close stacking interactions between the ligand phenyl groups and the nucleotide bases are demonstrated through unusually large downfield shifts (1-2 ppm) of the phenyl protons. The unprecedented 3WJ arrangement observed in solution has also been found to exist in the crystal structure of the helicate adduct of [d(CGTACG)2] (Angew. Chem., Int. Ed. 2006, 45, 1227).  相似文献   

2.
Tetradentate 1,2-bis[4-(4'-methyl-2,2'-bipyridyl)]ethane ligand (3) and Fe(NH4)2(SO4)2.6H2O combine in a 3:2 ratio to form the racemic helicate [Fe2L3]4+ (4), as reported by Elliott et al. We now show that the enantiomeric purity of 4 can be efficiently measured by 1H NMR by the use of the TRISPHAT (1) salt as a chiral shift reagent. Large differences in chemical shifts (deltadeltadelta of up to 0.3 ppm, 20% [D6]DMSO in CD3CN) are observed between the enantiomers of 4 upon addition of [nBu4N][delta-1]. The resolution of 4 by asymmetric extraction was attempted: addition of an organic solution of [cinchonidinium][delta-1] salt (2 equiv) to an aqueous solution of helicate 4-(SO4)2 led, after vigorous stirring, to the extraction of the homochiral diastereomer [P-4][delta-1]4 into the organic layer along with the precipitation of the heterochiral diastereomer [M-4][delta-1]4 at the interface (diastereomeric ratio>49:1 for both processes). An enantioenriched fraction of [P-4][SO4]2 remained in the aqueous layer. To obtain only two fractions of resolved helicate and develop this procedure into an efficient resolution protocol, four equivalents of [cinchonidinium][delta-1] salt were used as the resolving agent. Chemically and diastereomerically pure [P-4][delta-1]4 and [M-4][delta-1]4 helicate salts were then obtained in excellent yields.  相似文献   

3.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

4.
The benzene-o-dithiol/catechol ligands H4-2 and H4-3 react with [TiO(acac)2] to give the dinuclear, double-stranded anionic complexes [Ti2(L)2(mu-OCH3)2](2-) ([22](2-), L=2(4-); [23](2-), L=3(4-)). NMR spectroscopic investigations reveal that the complex anion [Ti2(2)2(mu-OCH3)(2)](2-) is formed as a mixture of three of four possible isomers/pairs of enantiomers, whereas only one isomer of the complex anion [Ti2(3)2(mu-OCH3)(2)](2-) is obtained. The crystal structure analysis of (PNP)2[Ti2(3)2(mu-OCH3)2] shows a parallel orientation of the ligand strands, whereas the structure determination for (AsPh4)2[Ti2(2)2(mu-OCH3)2] does not yield conclusive results about the orientation of the ligand strands due the presence of different isomers in solution, the possible co-crystallisation of different isomers and severe disorder in the crystal. NMR spectroscopy shows that ligand H4-3 reacts at elevated temperature with [TiO(acac)2] to give the triple-stranded helicate (PNP)4[Ti2(3)3] ((PNP)4[24]) as a mixture of two isomers, one with a parallel orientation of the ligand strands and one with an antiparallel orientation. Exclusively the triple-stranded helicates [Ti2(L)(3)](4-) ([25](4-), L=1(4-); [26](2-), L=4(4-)) are formed in the reaction of ligands H4-1 and H4-4 with [TiO(acac)2]. The molecular structures of Na(PNP)3[Ti2(1)3]CH(3)OHH(2)OEt(2)O (Na(PNP)3[25]CH(3)OHH(2)OEt(2)O) and Na(1.5)(PNP)(6.5)[Ti2(4)3]2.3 DMF (Na(1.5)(PNP)(6.5)[26]2.3 DMF) reveal a parallel orientation of the ligand strands in both complexes, which is retained in solution. The sodium cations present in the crystal structures lead to two different kinds of aggregation in the solid state. Na-[25]-Na-[25]-Na polymeric chains are formed from compound Na(PNP)3[25], with the sodium cations coordinated by the carbonyl groups of two ligand strands from two different [Ti2(1)3](4-) ions in addition to solvent molecules. In contrast to this, two [Ti2(4)3](4-) ions are connected by a sodium cation that is coordinated by the three meta oxygen atoms of the catecholato groups of each complex tetraanion to form a central {NaO6} octahedron in the anionic pentanuclear complex {[26]-Na-[26]}(7-).  相似文献   

5.
A unique ligand design allows the formation of both an M2L3 triple helicate and an M4L6 tetrahedron (M=Ti, Ga; L=ligand based on 2,6-diaminoanthracene). Although the tetrahedron is entropically disfavored, a strong host–guest interaction with Me4N+ is enough to drive the equilibrium towards the tetrahedron. Remarkably, the helicate can be quantitatively converted into the tetrahedron simply by addition of Me4N+ (shown schematically).  相似文献   

6.
Self assembly of the ditopic ligand L1 with Cu2+ gives the dinuclear double helicate [Cu2(L1)2]4+, which can further coordinate s-block cations. This coordination alters the helicate pitch to a variety of different lengths depending on the size and charge of the guest cation.  相似文献   

7.
A new series of organo-titanium complexes have been prepared from the reaction between Ti(NMe2)4 and C2-symmetric ligands, (R,R)-11,12-bis(pyrrol-2-ylmethyleneamino)-9,10-dihydro-9,10-ethanoanthracene (1H2), and (R,R)-bis(diphenylthiophosphoramino)-9,10-dihydro-9,10-ethanoanthracene (2H2), (R,R)-11,12-bis(mesitylenesulphonylamino)-9,10-dihydro-9,10-ethanoanthracene (3H2) and (R,R)-bis(diphenylthiophosphoramino)-1,2-cyclohexane (4H2). Treatment of Ti(NMe2)4 with 1 equiv of 1H2 gives, after recrystallization from a benzene solution, the binuclear double helicate titanium amide (1)2[Ti(NMe2)2]2⋅(5) in 71% yield. While under similar reaction conditions, reaction of Ti(NMe2)4 with 1 equiv of 2H2, 3H2 or 4H2 gives, after recrystallization from a toluene or benzene solution, the mononuclear single helicate titanium amides (2)Ti(NMe2)2 (6), (3)Ti(NMe2)2 (7) and (4)Ti(NMe2)2 (8), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 5-8 have further been confirmed by X-ray diffraction analyses. The titanium amides are active catalysts for the polymerization of rac-lactide, leading to the isotactic-rich polylactides.  相似文献   

8.
The first reversible interconversion process between a one-strand polymeric copper(II) complex {[Cu2(L1)2(ClO4)2](ClO4)2}n (1) and a dicopper(II) helicate [Cu2(L1-2H)2] (2), proceeding via a deprotonation-protonation process, can transduce fluorescence and function as a fluorescent switch simply by introducing a one fiftieth equivalent of coumarine 343 anion, a fluorophore.  相似文献   

9.
Enantiopure dinuclear ruthenium polypyridyl complexes of the form [Ru(2)(LL)(4)L(1)](PF(6))(4) (LL = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); L(1)= C(25)H(20)N(4) a bis(pyridylimine) ligand containing a diphenylmethane spacer) have been synthesized using the chiral building blocks cis-[Ru(bpy)(2)(py)(2)](2+) and cis-[Ru(phen)(2)(py)(2)](2+). These dinuclear ruthenium complexes have been characterised using NMR, mass spectrometry, UV-visible absorbance, circular dichroism and linear dichroism. The compounds exhibit good photo and thermal stability. The extinction coefficient for the bpy complex at 478 nm is epsilon(478) = 15,700 mol(-1) cm(-1) dm(3) and for the phen complex is epsilon(478) = 24,900 mol(-1) cm(-1) dm(3). Both complexes have their longest wavelength (metal to ligand charge transfer) transition predominantly x/y (short axis)-polarised while the transitions at shorter wavelength are a mixture of x/y and z-polarisations, similar to both the copper helicate and iron triple helicate studied previously. Cytotoxicity studies reveal that the compounds are dramatically less active against cancer cell lines than the recently reported supramolecular cylinders prepared from the same bis(pyridylimine) ligand.  相似文献   

10.
Reactions of the bis(bidentate) Schiff-bases N,N'-bis(6-alkyl-2-pyridylmethylene)ethane-1,2-diamine (where alkyl = H, Me, iPr) (L) with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluorophosphate afforded, respectively, the double-stranded, dinuclear metal helicates [T-4-(R,R)]-(+/-)-[M2L2](PF6)2 (M = Cu, Ag). The helicates were characterized by 1H and 13C NMR spectroscopy, conductivity, microanalysis, and single-crystal X-ray structure determinations on selected compounds. Intermolecular ligand exchange and intramolecular inversion rates for the complexes were investigated by 1H NMR spectroscopy. Reversible intermolecular ligand exchange between two differently substituted helicates followed first-order kinetics. The rate constants (k) and corresponding half-lives (t(1/2)) for ligand exchange for the dicopper(I) helicates were k = (1.6-1.8) x 10(-6) s(-1) (t(1/2) = 110-120 h) in acetone-d6, k = 4.9 x 10(-6) s(-1) (t(1/2) = 40 h) in dichloromethane-d2, and k > 2 x 10(-3) s(-1) (t(1/2) < 5 min) in acetonitrile-d3. Ligand exchange for the disilver(I) helicates occurred with k > 2 x 10(-3) s(-1) (t(1/2) < 5 min). Racemization of the dicopper(I) helicate by an intramolecular mechanism was investigated by determination of the coalescence temperature for the diastereotopic isopropyl-Me groups in the appropriate complex, and DeltaG() > 76 kJ mol(-1) was calculated for the process in acetone-d6, nitromethane-d3, and dichloromethane-d2 with DeltaG() = 75 kJ mol(-1) in acetonitrile-d3. Complete anion exchange of the hexafluorophosphate salt of a dicopper(I) helicate with the enantiomerically pure Delta-(-)-tris(catecholato)arsenate(V) ([As(cat)3]-) in the presence of Dabco gave the two diastereomers (R,R)-[Cu2L2][Delta-(-)-[As(cat)3]]2 and (S,S)-[Cu2L2][Delta-(-)-[As(cat)3]]2 in up to 54% diastereomeric excess, as determined by (1)H NMR spectroscopy. The diastereomerically and enantiomerically pure salt (R,R)-[Cu(2)L2][Delta-(-)-[As(cat)3]]2 crystallized from the solution in a typical second-order asymmetric transformation. The asymmetric transformation of the dicopper(I) helicate is the first synthesis of a diastereomerically and enantiomerically pure dicopper(I) helicate containing achiral ligands.  相似文献   

11.
The reaction of 4,4′,4′′,4′′′-(ethene-1,1,2,2-tetrayl)tetraaniline with 2-pyridinecarboxaldehyde and iron(II) chloride resulted, after aqueous workup, in the diastereoselective formation of an [Fe2L3]4+ triple-stranded helicate structure, irrespective of the stoichiometry employed. The helicate structure was characterized in solution by multinuclear NMR spectroscopy, and in the solid state by single-crystal X-ray crystallography. The reaction of iron(II) tetrafluoroborate or iron(II) bistriflimide with the tetraaniline and 2-pyridinecarboxaldehyde allowed the formation of an [Fe8L6]16+ cube when the appropriate stoichiometry was used, but these structures were unstable with respect to hydrolysis. The pendant amine groups on the helicate can be functionalized by reaction with acid chlorides or anhydrides, and the resulting functionalized tetraphenylethene (TPE) units were isolated by the reaction of the helicate with tris(2-aminoethyl)amine. The emission properties of the TPE units were studied in THF/water mixtures, and they were found by dynamic light scattering to self-assemble into large (av. diameter 250 nm) structures.  相似文献   

12.
The chiral tris, and pentakis(bipyridine) ligand strands 3a and 4 were synthesised, each in optically pure form with (S,S)-configuration. Ligand 3a yielded substituted double-helical metal complexes, derived from the parent trihelicate structure 2 , with CuI and AgI ions. The spectral data, in particular the 1H-NMR spectra and the large positive Cotton effect, indicate that helicate formation occurs with very high induction of helicity. Together with consideration of the steric effects in the two possible helical diastereoisomers (P)- 1 and (M)- 1 that may be formed, the data favour the preferential generation of the right-handed double helicate (P)- 1 from the tris(bipyridine) strand 3a of(S,S)-configuration.  相似文献   

13.
The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.  相似文献   

14.
The complexation reactions between Ag- and a series of enantiopure ligands belonging to the CHIRAGEN (from CHIRAlity GENerator) family (L1, L2, L3, based on (-)-5,6-pinene bipyridine) have been studied in solution. It has been shown that the length of the bridge plays a fundamental role in the self-assembly processes leading to different compounds: mononuclear complexes (with L3), mixtures of polynuclear complexes (with L2) and circular helicates (with L 1). Although the absolute configuration of the chiral centres in all three ligands is the same, the metal-centred chirality of L3 (delta) is inverted with respect to that in the other two complexes with L1 and L2 (delta). The metal configuration is thus opposite in the mononuclear complex with respect to the polynuclear species. Detailed thermodynamic studies were carried out for the Ag+ and L1 ligand system by 1H and 109Ag NMR spectroscopy (as a function of concentration, temperature and pressure). At low temperature and high pressure, the [Ag6L1(6)]6+ hexanuclear circular helicate forms a tetranuclear circular helicate [Ag4L1(4)]4+: 2[Ag6L1(6)]6+ <=> 3 [Ag4L1(4)]4+. The thermodynamics parameters, obtained by temperature and pressure variation, have the following values: K298 = (8.7 +/- 0.7) x 10(-5) mol x kg(-1), deltaHo = -15.65 +/- 0.8 kJ x mol(-1), deltaSo = -130.2 +/- 3 J x mol(-1) x K(-1) and deltaVo(256 K)= -160 +/- 12 cm3 x mol(-1). The reaction volume calculated according to Connolly's method indicates that the calculated structure of [Ag4L1(4)]4+ is plausible. Both the signs and large magnitudes of deltaSo and deltaVo are counterintuitive, yet can be understood by modelling methods.  相似文献   

15.
A novel neutral triple-stranded hexanuclear copper(I) cluster helicate [Cu(I)(6)L(3)]·2CH(3)CN derived from a thiosemicarbazone ligand could be synthesized and crystallographically characterized. The MALDI mass spectrum of this complex suggests that the tetranuclear copper(I) cluster helicate [Cu(I)(4)L(2)] is also present in solution. These copper(I) cluster helicates are capable, in the presence of O(2), of hydroxylating the arene linker of their supporting ligand strands. The resulting dinuclear complex [Cu(II)(2)L'(OH)] is formed by two copper(II) centers, a new ligand arising from the hydroxylation reaction, and one hydroxide group. The magnetic investigation of this compound shows a strong antiferromagnetic coupling between the two Cu(II) centers. The kinetic studies for the hydroxylation process show values of ΔH(≠)=-70 kJ mol(-1), similar to those mediated by the tyrosinase enzymes.  相似文献   

16.
The self-assembly of enantiopure pyridyl-functionalized metallosalan units affords a homochiral helicate cage, [Zn(8)L(4)Cl(8)], in which the optical rotation of each ligand is increased by a factor of 10 upon coordination. The octanuclear cage featuring a chiral amphiphilic cavity exhibits enantioselective luminescence enhancement by amino acids in solution. The cage exists in two different crystalline polymorphic forms that possess porous structures built of helicate cages interconnected by 1D channels or pentahedral cages and have the ability to separate small racemic molecules by adsorption but with different enantioselectivities.  相似文献   

17.
The coordination chemistry of the tetradentate pyridyl-thiazole (py-tz) N-donor ligand 6,6'-bis(4-phenylthiazol-2-yl)-2,2'-bipyridine (L1) has been investigated. Reaction of L1 with equimolar copper(II) ions results in the formation of the single-stranded mononuclear complex [Cu(L1)(ClO4)2] (1), whereas reaction with copper(I) ions results in the double-stranded dinuclear helicate [Cu2(L1)2][PF6]2 (2). Both complexes were characterized by X-ray crystallography, UV-vis spectroscopy, and electrospray ionization mass spectroscopy (as well as 1H NMR spectroscopy for diamagnetic 2). Complex 2 is redox-active and, upon one-electron oxidation, forms the stable tricationic mixed-valence helicate [Cu2(L1)2]3+ (3). This species can also be prepared in situ by combining [Cu(MeCN)4][BF4], [Cu(H2O)6][BF4]2, and L1 in a 1:1:2 ratio in nitromethane. X-ray crystallographic analysis of 3 provides structural evidence for the presence of an internuclear Cu-Cu bond, with an even distribution of spin density across the two Cu centers. Room-temperature UV-vis spectroscopy is consistent with this finding; however, frozen-glass EPR spectroscopic investigations suggest solvatochromic behavior at 110 K, with the [Cu2]3+ core varying from localized to delocalized depending on the solvent polarity.  相似文献   

18.
Two biscatecholester ligands with oligoether spacers were used to prepare dinuclear titanium(IV) triscatecholate based helicates. In the case of Li4[( 1 / 2 )3Ti2], “classical” helicates with three internally bound Li+ ions and syn‐oriented ligands in the complex units (fac/fac isomer) were obtained. In the case of the sodium salt Na4[( 2 )3Ti2], a different homochiral dinuclear triple‐stranded helicate with two internally bound Na+ ions was formed. The complex units are anti‐configured, and two of the ligand spacers are connecting internal with external positions of the helicate (mer/mer isomer). Removal of the sodium ions and addition of lithium ions leads to the switching from one topology to the other with an expanded helicate [( 2 )3Ti2]4? as an intermediate. Switching back to the “non‐classical” helicate cannot be observed because severe structural rearrangements would be required.  相似文献   

19.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

20.
The homoditopic ligand H2LC3 has been designed to form neutral triple-stranded bimetallic helicates of overall composition [Ln2(LC3)3]. The grafting of the polyoxyethylene fragments ensures water solubility and also favors cell penetration while being amenable to further derivatization. The ligand pKa values have been determined by spectrophotometric titration and range from 3.5 (sum of the first two) to 10.3. The thermodynamic stability of the helicates is large at physiological pH (logbeta23 in the range 22-23). The ligand triplet state has an adequate energy (0-phonon transition at approximately 20,800 cm(-1)) for sensitizing the luminescence of EuIII (Q=11%). Analysis of the EuIII emission spectrum points to an overall pseudo D3 symmetry for the metal environment. No significant effect of [Eu2(LC3)3] is observed on the viability of several cancerous cell lines (MCF-7, HeLa, Jurkat, and 5D10). The cell imaging properties of the EuIII helicate are demonstrated for the HeLa cell line by luminescence microscopy. Bright EuIII emission is seen for helicate concentration>50 microM and after 20-30 min loading time. The helicate stains the cytoplasm and the permeation mechanism is likely to be endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号