首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以TiCl3和氧化石墨(GO)为原料,采用简便的原位液相法制备了TiO2/石墨烯(RGO)纳米复合材料.利用XRD、SEM、XPS和UV-Vis光谱表征了其微观结构及性能,实验考察了复合材料光催化还原CO2性能,探究了其光催化反应机理.研究表明,TiO2/石墨烯纳米复合材料具有显著的光催化还原活性,光催化反应产物选择性高,反应6.0h甲醇的累积产量为3.43 mmol/L,石墨烯的协同效应提高了TiO2半导体的光催化活性和反应效率.  相似文献   

2.
以石墨烯纳米片(GNPs)为强韧相,双相磷酸钙(BCP)为基体,采用不同的分散剂,通过热压烧结制备一种力学性能优良的骨组织替代材料.主要研究不同分散剂和GNPs对复合材料的力学性能、物相组成和微观结构的影响.结果表明,添加十六烷基三甲基溴化铵(CTAB)作为分散剂时,由于表面正负电荷吸引,BCP粉体均匀包覆到GNPs的表面,可使GNPs达到较好的分散效果.当GNPs添加量为1.5wt;时,复合材料的弯曲强度和断裂韧性分别达到152 MPa和1.74 MPa·m1/2,与相同条件下制备的纯BCP陶瓷相比,分别提高了55;和76;,表明GNPs对BCP陶瓷具有明显的补强增韧的作用.  相似文献   

3.
近年来,石墨烯/聚苯胺复合材料由于自身优异的电化学性能引起了国内外学者的广泛关注,石墨烯具有大的比表面积和双电层电容特性,聚苯胺具有高赝电容特性,二者协同作用使其复合材料的超电容性能大大提高.主要介绍石墨烯/聚苯胺复合材料的制备方法及电容性能的影响因素,总结三维石墨烯/聚苯胺复合材料的构筑方法,并对复合材料未来在超级电容器领域的发展趋势进行了展望.  相似文献   

4.
近十年来,氧化石墨烯(GO)基复合材料日益引起研究者的广泛兴趣,而氧化石墨烯和二氧化硅的复合材料是其中的一个研究热点.本文介绍了氧化石墨烯/二氧化硅(GO/SiO2)复合材料的制备及其在吸附领域的应用.其制备方法包括非共价键法和共价键法,在非共价键法中,包括阳离子表面活性剂法和二氧化硅表面改性法;在共价键法中,包括形成酰胺键(-CO-NH-)、硅酯键(-COOSi-)、碳氧硅键(-C-O-Si-).吸附领域的应用包括对重金属离子、有机物的吸附.最后,我们对氧化石墨烯/二氧化硅复合材料将来的发展进行了展望.  相似文献   

5.
三维多孔石墨烯及其复合材料作为一种功能材料在能量存储、光电器件、气体分离和存储、吸附和传感器等领域得到关注.模板法由于能够精确控制孔尺寸、形貌和结构得到广泛研究.综述了利用分子筛、沸石、SiO2等硬模板,胶束、乳液、嵌段共聚物等软模板以及植物、粉末冶金、原位自牺牲等非传统模板制备三维多孔石墨烯及其复合材料的方法,并分析了各种方法的优缺点及材料性能.以期为三维多孔石墨烯及其复合材料的研究提供参考.  相似文献   

6.
采用软化学方法控制氧化石墨表面含氧官能团的数量,一步完成了石墨烯/Fe2O3纳米复合材料的控制合成.采用XRD和Raman光谱分析及TEM表征复合材料的组成、结构和微观形貌特征,并对石墨烯/Fe2O3复合负极的电化学储锂性能进行了研究.结果表明,石墨烯/Fe2O3复合材料作为锂离子电池负极材料具有较高的储锂容量和倍率性能,充放电循环性能稳定.在100 mA/g的电流密度下循环100次,可逆容量为606 mAh/g,放电效率保持在91;;在2 A/g下放电容量是其在250 mA/g下放电容量的58.2;.  相似文献   

7.
以石墨粉为原料,硝酸镍为镍源,用化学沉淀-水热法制备Ni(OH)2/石墨烯复合材料,研究不同氧化石墨(GO)与硝酸镍质量比对复合材料性能的影响,利用XRD、SEM、循环伏安(CV)、交流阻抗(EIS)和恒电流充放电技术测试其结构、表面微观形貌和电化学性质.研究结果表明:当GO: Ni(NO3)2=1:8(wt.)时,在5 mV/s扫描速度下具有高的活性物质利用率和电化学活性,0.2C放电比容量可以达到348.5 mAh/g,显示了优异的大电流充放电性能和循环稳定性.  相似文献   

8.
<正>近期,中国科学院合肥物质科学研究院智能机械研究所仿生功能材料与传感器件研究中心"973"项目首席科学家刘锦淮研究员和中科院"引进海外杰出人才"黄行九研究员领导的课题组,在去除水环境中重金属污染物研究方面取得新的突破:他们制备的新型材料可快速、高效去除水中钴离子。水中重金属离子钴(Ⅱ),在高浓度时会引起很多严重的健康问题,如低血压,瘫痪、腹泻和骨缺陷,也会导致活细胞的基因突变,此外,放射性60Co还是重要的核污染物。  相似文献   

9.
采用水热法制备ZnO/石墨烯复合材料,研究了ZnO、石墨烯不同配比与其电化学性能的关系.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电、循环伏安法和交流阻抗等测试方法对复合材料结构、形貌及电化学性能进行表征,并通过电池解扣结合SEM和EDS进一步研究电极充放电前后的形貌及组分变化.结果表明,ZnO与石墨烯质量比为1∶1时电化学性能最好,在50 mA/g电流密度下首次可逆比容量高达680 mAh/g,且循环100次之后仍保持相对最高.电池解扣分析证明电极材料在充放电过程中表面会产生微裂纹影响其电化学性能.  相似文献   

10.
以醋酸铜Cu(Ac)2和氧化石墨烯(GO)为原料,去离子水作溶剂,十六烷基三甲基溴化铵(CTMAB)为表面活性剂,通过水热反应制备了CuO/GO纳米复合材料.傅里叶红外光谱(FT-IR)、X-射线粉末衍射(XRD)以及光电子能谱仪(XPS)和透射电镜(TEM)对合成的复合材料结构表征以及形貌分析,结果发现CuO纳米粒子均匀地分散在GO上.并将制备的复合材料对罗丹明B溶液进行光催化降解研究,结果发现在光反应80 min后,罗丹明B的浓度降低率达到85;,因此CuO/GO复合材料对罗丹明B表现出了良好的光催化性能.  相似文献   

11.
采用温和的水热法在氧化石墨烯(GO)片层上原位生长纳米SnO2颗粒, 通过氨水调节体系pH值并对石墨烯进行掺氮,成功制备出了SnO2/氮掺杂石墨烯(N-rGO)和SnO2/石墨烯(rGO)纳米复合材料,并对它的电池和电催化性能进行研究.XRD和SEM等分析结果表明,SnO2颗粒均匀地分布在N-rGO和rGO表面,粒径分别为50 nm和100 nm左右.进一步的TEM结果表明,SnO2颗粒是由更细小的粒径为5~7 nm SnO2颗粒所组成的二次团聚体.半电池性能测试结果表明:在100 mA/g电流密度下,SnO2/N-rGO和SnO2/rGO的可逆容量分别为901 mAh/g、756 mAh/g,比同等条件下纯的纳米SnO2高6.0和4.9倍;在2 A/g的高电流密度放电情况下, SnO2/N-rGO和SnO2/rGO的放电比容量分别可以达到619 mAh/g和511 mAh/g,表现出优异的倍率性能.电催化性能测试表明:SnO2/N-rGO的催化活性要高于SnO2/rGO,催化氧还原反应(ORR)主要按照四电子转移过程进行,为非铂催化剂的研究提供了一个新的思路.  相似文献   

12.
采用化学气相沉积法以乙醇为碳源在铜箔生长的单层高质量的石墨烯并将其转移到SiO2/Si基底上。然后在通过自组装的方法在石墨烯表面覆盖一层单层的PS微球阵列。采用反应离子刻蚀的方法在一定的刻蚀条件下对其进行刻蚀,随着刻蚀的时间增加,PS微球的会被逐渐刻蚀掉,石墨烯也会在这个过程中随着被刻蚀。将残留的PS微球杂质去掉后,会在 SiO2/Si基底上呈现出排列规整的石墨烯纳米盘阵列。通过场发射扫描电子显微镜( SEM)、拉曼光谱对石墨烯纳米盘及其形成过程进行表征和分析,为后续制备高质量石墨烯纳米带、石墨烯纳米点、石墨烯纳米盘提供参考。  相似文献   

13.
石墨烯及其复合材料作为一种新型功能材料在能量存储领域受到广泛的关注。电化学制备技术相比于其他的制备手段具有安全、高效、绿色的优点。本文综述了电化学法制备石墨烯/纳米金属复合材料、石墨烯/金属氧化物(氢氧化物)复合材料、石墨烯/聚合物复合材料等的研究进展及其在超级电容器上的应用,以期为电化学制备石墨烯及其复合材料在超电领域的研究提供参考。  相似文献   

14.
刘迅  郭方  仲莹莹 《人工晶体学报》2017,46(8):1635-1642
以氧化石墨烯为模板,在酒石酸的存在下合成了水性氧化石墨烯/聚苯胺/二氧化钛复合材料.通过TEM、SEM、XRD和IR等设备对材料进行了表征,并采用光降解和电化学手段研究了复合材料的光催化和防腐性能.结果表明,酒石酸掺杂苯胺单体在氧化石墨烯纳米片层表面聚合获得氧化石墨烯/聚苯胺(G/P)层状结构,纳米二氧化钛均匀分散在G/P前躯体表面,形成水性氧化石墨烯/聚苯胺/二氧化钛(G/P/T)层状复合材料.罗丹明B光降解试验表明,复合材料具有良好的光降解效果,提高了金属材料耐生物腐蚀性能;G/P/T改性的环氧树脂则有效地改善了铝合金的腐蚀状况,将铝合金的自腐蚀电流从10-5 A/cm2降低至约10-11 A/cm2.  相似文献   

15.
多孔硅具有比表面积大、发光性能良好等特点,目前对于多孔硅的研究已经涉及到生物与化学传感器、药物递送、光催化、能源等领域。多孔硅中的孔隙可有效缓解硅在锂化时的体积膨胀,缩短锂离子从电解液向硅本体扩散的距离,促进高电流密度下的充放电过程。因此,多孔硅在储能领域得到了广泛研究与发展。但是一些挑战仍然存在,如制备成本、刻蚀机理、多孔结构的调控、多孔硅的电化学性能等还不能满足商业化应用的要求。本文对目前国内外多孔硅制备方法的研究进行了综述,并详细介绍了多孔硅在锂离子电池领域的应用。最后,对多孔硅材料在储能领域的发展进行了展望。  相似文献   

16.
氢能的引入能有效提升配电网的供电可靠性,而电解水制氢是实现低碳转型的关键技术,开发高效的电解水催化剂势在必行。过渡金属氧化物储量大、催化活性高,是具有广阔应用前景的析氧反应催化剂。本文通过射频等离子体处理制备石墨烯上负载Co3O4析氧催化剂,XRD、Raman和XPS测试结果显示,二维结构石墨烯的引入加速表面电子迁移,增大了反应面积。等离子体处理促进了纳米粒子在石墨烯上的负载,利用等离子体刻蚀作用在催化剂表面制造出大量碳结构缺陷和氧空位结构,改善了活性位点分布,有效调控Co3O4电子结构,提高析氧催化活性。电化学测试表明,本文中合成的Co3O4@rGO在电流密度为50 mA·cm-2时的过电位为410 mV,动力学反应速率较快,表现出优于商业IrO2的析氧催化活性。  相似文献   

17.
陈芳  赵国平  莫尊理 《人工晶体学报》2016,45(12):2795-2800
利用石墨烯纳米(GNs)片作为载体,将钛酸四正丁酯包裹Fe3O4纳米粒子的微乳液通过搅拌和超声负载于其表面或镶嵌于其二维结构的片层间,制备GNs/Fe3O4/TiO2磁性复合光催化材料.通过FrIR、SEM、TEM、EDX、XRD、VSM等手段对样品进行了表征,并对其光催化机理进行了分析.测试结果表明,TiO2含量对复合材料的光催化性能有显著影响,对对硝基苯酚和罗丹明B的光催化降解率最高分别可达96.0;和98.3;.  相似文献   

18.
采用水热碳化法成功制备了不同碳含量的CdS@C纳米颗粒,同时对CdS@C的晶体结构、形貌、光学性能、光电化学和光催化性能进行了研究。实验结果表明本方法制备的碳包覆CdS纳米颗粒外壳为碳层,内核为六方纤锌矿结构CdS颗粒。CdS@C颗粒分散性良好,颗粒形貌主要为类球形,粒度均匀。X射线光电子能谱(XPS)证实CdS@C颗粒表面负载的碳主要以非晶碳形式存在。紫外-可见光光谱(UV-Vis)表明CdS@C纳米晶中表面碳的敏化作用提高了可见光响应范围,使得能隙变窄。光致发光光谱(PL)表明碳包覆CdS@C纳米颗粒的发光强度比纯CdS弱,有效抑制了光生载流子的复合。瞬态光电流响应和电化学阻抗谱(EIS)说明CdS@C纳米复合材料更有效促进电子-空穴对分离和提高转移效率。CdS@C纳米复合材料在可见光辐射下表现出良好的光催化活性和稳定性,其中·O2-和h+在光催化中起主要作用。  相似文献   

19.
洪玮  彭波  刘军  姜楠  骆英 《人工晶体学报》2017,46(2):278-284
首先制备了硅烷偶联剂改性后的石墨烯和钛酸锶钡粉体,然后采用溶液混合法制备了石墨烯/钛酸锶钡/聚偏氟乙烯薄膜,并且对复合薄膜的微观结构、介电性能和热稳定性进行测定和分析.结果表明:硅烷偶联剂成功接枝到石墨烯和钛酸锶钡粉体表面,石墨烯和钛酸锶钡粉体能够较好的分散在聚偏氟乙烯基体中,石墨烯的加入可以大幅度提高材料的介电性能.在石墨烯质量分数为4.06;时,复合薄膜的介电常数达到515,介电损耗为0.6.在质量分数4.14;时发生了渗流现象,介电常数达到1500,介电损耗也达到了5左右.石墨烯的加人大幅度提升了复合材料的介电性能,并且在常用温度范围内具有良好的温度稳定性.  相似文献   

20.
化学气相沉积法生长的单层石墨烯具有卓越的力学、热学和电学特性,成为新一代纳米器件的首选材料。对石墨烯电子特性的理论研究有利于推动纳米器件的发展与应用。本文基于密度泛函理论与非平衡格林函数相结合的方法,系统地研究了石墨烯及石墨烯/氮化硼的电子结构特性。结果表明,在高对称K点,带隙为零。在50~400 K范围内,由于费米面的电声子散射作用,单层石墨烯的迁移率随着温度增加呈现显著下降趋势。此外,通过对不同层间距的石墨烯/氮化硼结构的能带、态密度、电子密度等特性分析,发现随着层间距增加,能带间隙减小,导带与价带间的能量差减小。随着原子个数的增加,石墨烯/氮化硼超胞结构与原胞结构的带隙开度变化规律一致,这对石墨烯基器件的结构设计具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号