首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 596 毫秒
1.
在AlN-Y2O3添加量为6wt;的前提下,将摩尔比分别为10∶90、20∶80、30∶70和40∶60的AlN、Y2O3引入SiC耐磨材料中,于氧化气氛下经1600℃保温3h烧成,研究了AlN、Y2O3配比对SiC耐磨材料结构和性能的影响.结果表明:AlN、Y2O3配比对SiC耐磨材料的性能影响较大,当其为30∶70时,SiC耐磨材料的性能较优,其体积密度和显气孔率分别为2.66 g/cm3和3.95;,磨损量为0.11 g/min,硬度和抗折强度分别为2774 HV和185 MPa.SiC耐磨材料较优异的烧结性能和力学性能可归因于新生成的Y2Si2O7和3Al2O3·2SiO2充填于SiC颗粒间所起的强化作用.  相似文献   

2.
以紧密堆积的三级配SiC颗粒(粒径为325 μm、212 μm、80 μm,质量比为17∶7∶1)为基础配方,将Owt;、1wt;、2wt;、3wt;和4wt;且粒径为5μm的SiC微粉添加到SiC耐磨材料中,经1600℃保温3h烧制,研究了SiC微粉添加量对SiC耐磨材料结构和性能的影响.结果表明:SiC微粉可促进SiC耐磨材料的烧结致密化,并改善其力学性能,当其添加量为3wt;时,试样的综合性能较优,其体积密度和显气孔率分别为2.63 g/cm3和7.62;,硬度、抗折强度和磨损量分别为2458 HV、183 Mpa和0.26 g/min.SiC耐磨材料烧结性能和力学性能的提高可归因子SiC微粉充填在SiC颗粒间,缩短了扩散传质路径,且较小粒径的SiC微粉具有较大的表面能,烧结时易于晶粒重排,保证了烧结网络的连续性,增大了颗粒间的结合程度.  相似文献   

3.
以晶硅切割废料Si粉和SiC为原料,Y2O3-Al2O3-Fe2O3为复合烧结助剂,反应烧结法制备低压铸造升液管用Si3N4/SiC复相陶瓷材料.设计L9(34)正交实验,研究了原料中Si、助剂Al2O3、Y2O3和Fe2O3的含量对陶瓷材料力学性能的影响和优化.采用X射线衍射(XRD)和扫描电镜(SEM)对复合材料的相组成、断口形貌进行分析.结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量SiALON及未反应的Si.Si含量对力学性能的影响最为显著,通过对正交试验的验证,20wt; Si、3.2wt; Al2O3、0.8wt;Fe2O3和2wt; Y2O3时烧结体抗弯强度最高.  相似文献   

4.
采用温度梯度无压烧结工艺制备了透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料,探讨了其致密化烧结特性,并对其力学性能进行了测试和分析.研究了透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料的微观结构,并分析了其力学性能和微观结构与透辉石含量的关系.结果表明:与纯Al2O3相比,透辉石/AlTiB增韧补强Al2O3基结构陶瓷材料的力学性能得到明显提高,其中添加6;(体积百分含量,下同)透辉石和4;AlTiB的Al2O3基结构陶瓷材料获得较好的综合力学性能,其硬度、抗弯强度和断裂韧性分别达到16.02 GPa、370 MPa和5.11 MPa·m1/2.力学性能提高的主要原因为:添加相与Al2O3基体之间界面反应的发生以及透辉石和AlTiB对复合材料的协同晶粒细化效应.  相似文献   

5.
为得到性能优良的复合SiC陶瓷,实验选用1μm的α-SiC和不同粒度β-SiC粉体经过喷雾造粒,将所得不同种类造粒粉压制β/α复合SiC陶瓷素坯,进行无压烧结。通过对烧结体的密度、显微硬度和断裂韧性进行测试和表征,分析研究β-SiC与α-SiC粒度组合对β/α复合SiC陶瓷的性能影响。研究结果表明:添加一定比例、合适粒径的β-SiC到α-SiC中对SiC陶瓷的性能有提高作用。当在1μm的α-SiC中添加1μm的β-SiC时复合SiC陶瓷密度最大,为3. 148 g/cm~3,维氏硬度也最大,为23. 98 GPa,同时其断裂韧性比单一α-SiC陶瓷有所提高,为4. 44 MPa·m~(1/2)。  相似文献   

6.
烧结工艺参数对陶瓷刀具材料的机械力学性能具有重要影响.利用正交试验法研究了烧结温度、烧结压力和保温时间三个工艺参数对Al2O3/SiC陶瓷刀具材料微观结构及力学性能的影响.用极差分析法对正交试验结果进行了分析.结果表明烧结温度是影响Al2O3/SiC陶瓷刀具材料机械力学性能最重要的因素,其次是烧结压力和保温时间;刀具材料的断口形貌表明烧结工艺参数,尤其是烧结温度对微观组织结构和力学性能具有重要影响.正交试验结果和微观组织结构形貌分析具有很好的一致性.  相似文献   

7.
以TiC、C、Mn、Ni、Mo、α-Al2O3微粉和还原Fe粉为主要原料,采用粉末冶金方法制备Al2O3-TiC/Fe金属基陶瓷材料.利用管式真空烧结炉(φ150 mm)高真空(2.5 Pa)烧结,烧成温度为1530℃,保温时间90 min.研究探讨不同稀土添加剂对试样吸水率及体积密度的影响,揭示材料的耐磨性能,以及稀土添加剂对试样的显微组织影响.试验表明:在以上条件下,添加0.3;的Y2O3时,Al2O3-TiC/Fe基金属陶瓷材料的吸水率和体积密度达到了最佳状态,分别为0.0310;和6.7770g/cm3,此时材料的耐磨性能得到提高.  相似文献   

8.
利用无压烧结方法制备了添加透辉石的Al2O3基陶瓷,研究了烧结温度和保温时间对Al2O3基陶瓷的相对密度、硬度、抗弯强度和断裂韧性的影响,探讨了烧结工艺参数对Al2O3陶瓷力学性能和微观结构的影响.结果表明,Al2O3陶瓷的力学性能随烧结温度和保温时间变化趋势与材料密度的变化趋势一致;添加透辉石的Al2O3陶瓷在1520 ℃烧结140 min时,具有最佳的综合力学性能;显微结构分析表明,Al2O3陶瓷的力学性能受到其气孔率、晶粒发育情况和断裂模式的影响.  相似文献   

9.
采用微波烧结方式制备Al2O3陶瓷,研究了助烧剂含量和素坯脱胶工艺对Al2O3陶瓷微观组织和力学性能的影响.研究结果表明:相较于传统无压烧结,微波烧结有利于降低Al2O3陶瓷的烧结温度,并提高致密度和力学性能.脱胶后烧结体晶粒结合更加紧密,界面结合强度有明显提高,断裂模式以穿晶断裂为主.当MgO与Y2O3添加量为0.7wt;时,Al2O3陶瓷致密度稳定在99.1;以上,断裂韧度和维氏硬度分别达到4.9 MPa·m1/2和17.0 GPa.  相似文献   

10.
研究了透辉石增韧补强Al2O3,基陶瓷材料的无压烧结致密化过程,根据压坏烧结时烧结温度和保温时间对线收缩率的影响,计算了复合材料液相烧结的表观激活能Q,得出其致密化机理为扩散机制控制.建立了透辉石增韧补强Al2O3,基陶瓷材料的烧结动力学方程,并由特征指数n值对比研究了它们的烧结致密化机制.纯Al2O3陶瓷材料烧结过程中的物质迁移机制由体扩散控制;透辉石增韧补强Al2O3基陶瓷材料烧结过程中的物质迁移机制既有体扩散,也有晶界扩散.  相似文献   

11.
将金属Al、Al3Ti和TiB2以AlTiB中间合金的形式引入Al2O3基体材料中,采用热压原位反应生成法制备了Al2O3/TiB2/AlN/TiN复合陶瓷材料.复合材料在烧结过程处于过渡液相烧结,并有新相AlN和TiN生成;对热压烧结后材料的硬度、断裂韧性和抗弯强度进行了测试和分析;分析了复合材料力学性能随AlTiB体积百分含量的变化规律;探讨了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiB中间合金的细化特性进行了分析.  相似文献   

12.
在1 500 ℃的真空条件下,通过液相渗硅法(liquid silicon infiltration, LSI)制备了碳化硼/二硼化钛-碳纳米管(B4C-TiB2-CNT)陶瓷复合材料,对其成分、形貌、性能和增韧机理进行了分析表征和研究。结果表明:复合材料的主要组成相为B12(C, Si, B)3、SiC和Si。二硼化钛和碳纳米管显著提高了液相渗硅烧结碳化硼陶瓷的力学性能,在TiB2和CNT的添加量分别为10%和0.4%时,复合陶瓷的弯曲强度和断裂韧性达到了(390±18) MPa和(5.38±0.38) MPa·m1/2,分别比B4C陶瓷高了31%和53%。本文的研究从片状SiC颗粒和CNT的拔出、TiB2的颗粒增韧以及裂纹的偏转等方面解释了B4C-TiB2-CNT复合材料的增韧机理。  相似文献   

13.
自增韧和增强的镁铝尖晶石透明陶瓷   总被引:2,自引:1,他引:1  
用化学配比n为1.0,1.3,1.5和1.8的MgO·nAl2O3粉体分别制备出了镁铝尖晶石透明陶瓷MA1.0,MA1.3,MA1.5和MA1.8.这些陶瓷是通过真空烧结和热等静压两步烧结方法制得的.由于第二相物质氧化铝晶粒的析出,陶瓷相对密度随着化学配比的增高而降低.然而,与化学配比陶瓷相比,这些非化学配比陶瓷表现出了较高的机械性能,陶瓷断面的扫描电镜照片显示非化学配比陶瓷多为穿晶断裂模式,这种断裂模式对陶瓷的强韧化作出了主要贡献.  相似文献   

14.
Nanostructured materials win big scientific interest and increasingly economic meaning through their specific exceptional properties. Precursors that were compacted by pressing and sintering are normally used preparation of materials. In present work, the influence of mechanical activation by grinding on the structure as well as on compacting and sintering behavior of oxides from magnesium, aluminium and silicon has been investigated. Starting materials for each metal oxide differ in microstructure, dispersity, and porosity. The influence of mechanical activation on the destruction of crystalline structure to nanocrystalline, as well as to the amorphous stage and the compaction of powders with nano‐particles, as well as structures with nanoscale pores have been compared. The possibilities of the consolidation of nanostructured materials were investigated. The mechanical activation took place in a disc vibration mill. The mechanical activated materials as well as their pressing and their sintering products were characterized by density, particle‐sizedistribution, specific surface, pore‐structure, microstructure, and crystallite size by X‐ray powder diffraction (XRD). The mechanical activation of the model‐substances led, in most cases, to an improvement of the compaction properties; thus, this improvement can be achieved with subsequent sintering densities up to 98% of the theoretical density. From these experiments, generalizations transferable to other materials can be made.  相似文献   

15.
以Al2O3粉为原料,TiO2+MgO为烧结助剂,琼脂糖为单体,聚丙烯酸铵为分散剂,利用凝胶注模及无压烧结工艺制备了Al2O3陶瓷.研究了琼脂糖固化机制、烧结助剂作用机理以及琼脂糖含量对Al2O3陶瓷坯体及烧结体的显微结构及力学性能的影响规律.试验结果表明,琼脂糖利用内部氢键的结合,形成三维网络状结构,将Al2O3粉原位凝固成型.TiO2+MgO烧结助剂使材料实现了液相烧结机制,有利于降低材料的烧结温度及促进致密化进程.随着琼脂糖含量增加,坯体的致密度、坯体及烧结体的抗弯强度均呈先增大后减小趋势.当琼脂糖含量为0.5wt;时,Al2O3陶瓷的抗弯强度达到最大值.  相似文献   

16.
采用80wt;商洛钒尾矿为主要原料,加入钾长石、粘土为辅助原料,以SiC为发泡剂,制备性能优异的轻质高强陶瓷颗粒.采用单因素变量分析法研究钒尾矿含量、SiC添加量、烧成温度和保温时间对陶粒结构及性能的影响.研究结果表明:随着发泡剂SiC含量的增加、烧成温度的提高和保温时间的延长,陶粒的堆积密度和筒压强度均降低,吸水率均升高.最终加入2wt;SiC为发泡剂,在1125℃下保温30min制得堆积密度631kg/m3,筒压强度9.1MPa,吸水率3.1;的轻质高强陶瓷颗粒.  相似文献   

17.
采用平均粒径为10.16 μm的α-Al2O3粉体为原材料,利用注浆成型技术制备陶瓷膜支撑体.设置正交实验,研究成孔剂、粘结剂、烧结助剂(硅酸钠+TiO2+CaCO3+MgO)含量及保温时间对支撑各性能的影响;在正交实验结论基础上,通过改变烧结温度,于低温条件下制备出性能良好的陶瓷膜支撑体.实验表明:硅酸钠用量、成孔剂用量、粘结剂用量和保温时间最佳组合分别为4;、6;、0.6;和2 h.在1400~1450 ℃温度区间内制得的支撑体各性能指标均相对较优,适宜作为陶瓷膜载体使用.  相似文献   

18.
王涛 《人工晶体学报》2017,46(10):2062-2066
用无压浸渗法制备了高导热的SiC/Al电子封装材料.采用光学显微镜、X射线衍射仪、扫描电镜和激光热导仪对复合材料导热率、晶体结构和微观形貌进行了分析,研究了SiC颗粒大小、形状、体积分数、基体中Mg的含量和预氧化等参数对SiC/Al复合材料的导热率的影响.结果表明,选择适当的原料参数和工艺参数可制得导热率高达172.27 W/(m·k)的SiC/Al复合材料,满足电子封装材料的要求.  相似文献   

19.
NZP材料因其具有可调节的低热膨胀性在在热冲击方面有潜在应用,而且NZP材料还具有良好的化学和热稳定性,还经常被作为陶瓷核废料中放射性核元素的封装和固定的候选材料.NZP型晶体结构允许使用大量的离子替代,使其产生了热膨胀的可调性以及离子导电性.然而,NZP在整块材料中制作起来非常困难,因为其过程需要保证高温和很长的烧结时间.通过对磷酸盐玻璃使用玻璃反应烧结工艺,在一种低温替代路线中获得了含有钨(IV)、锡(IV)的NZP结晶相.通过使用微波加热以及传统的熔炼和铸造技术,制备了一种含有适量NaPO3-Sn(II)O-W(VI)O3化合物的玻璃.粉碎后,玻璃粉末压于室温下冷却.将绿色的弹丸在烧结反应温度下分别经历不同的时间段进行固化.差热(DTA)实验中,结果显示不同的参数影响着NZP相的性能.在特定条件如玻璃的初始位置小于100 μm的玻璃颗粒度及在大气环境下固化,能够得到一种含有单一晶相的玻璃陶瓷,且晶相具有NZP型晶体结构.烧结过程中需要有氧的存在,但氧分压的提高并没有使NZP相的含量有所改善.此外,温度要严格控制高于710 ℃,保证获得的NZP玻璃陶瓷中不含有任何次晶相.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号