首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用水热法改变NaOH体积制备了不同形貌的CaTi2O4(OH)2粉体,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品进行了微观结构分析,并利用紫外-可见吸收测试仪对样品的吸收边进行了测试与分析.研究不同NaOH体积对CaTi2O4(OH)2片状结构的发育与生长、产率和光催化性能的影响.结果表明:随着NaOH体积的增加,有利于CaTi2O4(OH)2片状结构的发育与生长,并在(040)、(251)、(371)晶面上具有择优生长的习性,使得CaTi2O4(OH)2产率可达到94.2;.然而,所制备样品的光吸收与光催化性能却随着NaOH体积的增加反而降低.当加入2.4 mL NaOH所制备样品在紫外可见光下120 min对罗丹明B的分解率达到93.7;.  相似文献   

2.
利用无水氯化钙-钛酸四正丁酯-无水乙醇体系,通过掺杂Nb用溶剂热法制备了CaTi2O4(OH)2片状结构.利用X射线衍射(XRD),扫描电子显微镜(SEM)和比表面积测试仪(BET)对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计分析了样品对光的吸收特性,研究掺人不同Nb量对CaTi2O4(OH)2样品的物相结构、微观形貌以及其光催化性能的影响,并考察了不同光源对所制备样品性能的影响.实验结果表明:随着Nb掺杂量的增加,样品的结晶度逐渐增加,当Nb掺杂量为6;时,CaTi2O4(OH)2片状结构结晶度达到最大值75.92;,此时在光源250 nm照射下光催化性能达到最优,进一步增加Nb掺杂量8;,光催化性能随之降低.这主要是样品的结晶度、能级和比表面积减小成为主导因素.  相似文献   

3.
利用水热法通过改变填充溶剂的种类制备了不同形貌的CaTi2 O4(OH)2粉体.采用X射线衍射仪和扫描电子显微镜对粉体的相结构和微观形貌进行了分析,并结合粉体在紫外-可见吸收光下对罗丹明B的吸附率及光降解率进行了表征.研究了不同填充溶剂对CaTi2 O4 (OH)2的相结构、微观形貌、能带宽度以及光催化性能的影响.结果表明:乙醇和乙二醇作为填充溶剂时会抑制晶体的生长和发育,可获得纳米线状或团状CaTi2 O4 (OH)2粉体,对罗丹明B表现出较佳的吸附特性;无填充溶剂以及以水和环己烷分别作为填充溶剂可获得具有片状结构的CaTi2O4(OH)2粉体.填充环己烷能够促进CaTi2O4(OH)2相的生长和发育,结晶度最高达到了78.04;,在紫外可见光3h下对罗丹明B降解率达到91.6;.  相似文献   

4.
由于CaTi2O4(OH)2导电性较差,为进一步提升CaTi2O4(OH)2电化学性能,将具有优异导电性的石墨烯材料与之复合.采用C为原料,H2 SO4为插层剂,KMnO4为氧化剂还原制得石墨烯,将两者复合制备石墨烯-CaTi2 O4(OH)2复合材料.研究高锰酸钾用量对石墨烯-CaTi2O4(OH)2复合材料电化学性能的影响.利用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的显微结构、形貌进行检测分析,采用恒电流充放电(CP)和循环伏安(CV)等技术测试其电化学性能.实验结果表明:当高锰酸钾用量5 g时,可以制备出氧化、还原程度良好,电化学性能优异的石墨烯,与CaTi2O4(OH)2复合制得样品电极,其电化学性能最优,在5 A/g的工作电流密度下,样品比电容高达394.2 F·g-1是纯CaTi2O4(OH)2电容值(162 F·g-1)的2.43倍.  相似文献   

5.
以钛酸正丁酯和无水氯化钙为原料,采用水热法制备了不同紫外光催化特性的CaTi2O4(OH)2粉体.利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品的相结构和微观形貌进行了分析,并结合粉体的紫外-可见吸收分光光谱表征了材料的吸收特性及带隙宽度.研究了不同水热反应温度对CaTi2O4(OH)2物相结构、微观形貌、晶体生长特性及紫外光催化性能的影响.结果表明:水热反应温度控制在160~200 ℃时,保温36 h都能得到纯的CaTi2O4(OH)2相,粉体的形貌随着水热反应温度的提高经历了由片状和颗粒垛堆到发育成完整的片状形貌过程,当水热反应温度在200 ℃时,片与片之间出现积聚现象;在水热反应温度为180 ℃时,制备的粉体具有最高的结晶度,在紫外光5 h下对罗丹明B的催化效率最佳.  相似文献   

6.
利用一步溶剂热法制备了CaTi2O4(OH)2片状结构.利用X射线衍射仪和扫描电子显微镜测试样品的晶体结构和形貌,采用CHI660E电化学工作站对样品进行电化学性能分析,研究水/乙醇摩尔比对CaTi2O4(OH)2样品的物相、形貌及电化学性能的影响.实验结果表明:随着水/乙醇摩尔比增加,样品的比电容先增加后减小,当水/乙醇摩尔比为50/10时,当水/乙醇摩尔比为50/10时,样品在10 mA/cm2电流密度下比电容达到最优值268.8 F·g-1.  相似文献   

7.
利用无水氯化钙-钛酸四正丁酯-无水乙醇体系,通过掺杂Co元素,用溶剂热法制备了CaTi2O4(OH)2片状结构.利用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的显微结构进行检测分析,并利用CHI660E电化学工作站测试掺杂样品电化学性能,研究掺入Co元素对CaTi2O4 (OH)2样品的物相结构、微观形貌以及其电化学性能的影响.实验结果表明:随着钴离子掺入量增加样品的比电容先增加后减小,当Co掺杂量为2;样品的电化学性能最优,且在10 mA/cm2的工作电流密度下,其比电容为496.3 F·g-1.  相似文献   

8.
采用溶剂热法制备了CaTi2O5微纳结构.用X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对样品进行了表征,并用紫外-可见吸收光度计分析样品对光的吸收特性,研究不同钙源种类对CaTi2O5样品的物相、微观形貌及光催化性能的影响.结果表明:CaTi2O5样品更有利于降解甲基橙溶液.钙源为CaCl2所制备的CaTi2O5样品的结晶度高、颗粒大小均匀,具有低的反射率和高的吸收率,高的比表面积(112.34 m2·g-1),因此样品呈现出较高的光催化性能.  相似文献   

9.
通过高温煅烧三聚氰胺制备了石墨相氮化碳g-C3N4,再以硼氢化钠( NaBH4)为还原剂,室温下还原氯化高铁(FeCl3· 6H2O)制备出了具有核壳结构的Fe@Fe2O3纳米线.然后分别通过超声法和溶剂热法制备了Fe@Fe2 O3/g-C3N4复合光催化剂,并利用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等表征方法对其进行表征.所得样品的光催化性能通过在可见光下(λ≥400 nm)光催化降解罗丹明B(RhB)溶液来评估.研究表明,超声法制备的Fe@Fe2O3/g-C3N4复合催化剂具有优良的可见光催化性能,其催化活性明显高于单组分的催化活性,一般认为Fe@Fe2O3与g-C3N4之间有一定的协同作用,从而可以提高材料的催化活性.同时,研究发现该催化体系中起关键作用的主要活性物种是超氧自由基.  相似文献   

10.
通过控制水含量,用水热法制备了CaTi2O4(OH)2片状结构。通过对水含量为50 mol条件下所制备的CaTi2O4(OH)2片状结构煅烧来制备CaTiO3片状结构。当热处理温度≤400℃,CaTi2O4(OH)2纳米片状结构稳定存在。当热处理温度为650℃和750℃,制备了CaTiO3片状结构。采用XRD、SEM和TEM等测试方法对片状结构进行表征,并对CaTi2O4(OH)2片状结构向CaTiO3片状结构转化的反应过程和形成机理进行分析。在热处理温度400℃时,样品的首次放电比容量最大,可达到168.5 mAh/g。当热处理温度继续升高到650℃和750℃,样品的首次充放电容量分别为18.9 mAh/g和5 mAh/g。这说明发育完善的CaTi2O4(OH)2片状结构有利于电化学过程中离子的嵌入和脱出。  相似文献   

11.
采用浸渍法制备不同负载量NiFe2 O4的负载型光催化剂NiFe2 O4/g-C3 N4,利用XRD、FT-IR、N2-adsorption、ICP-OES、TEM及XPS等手段表征NiFe2 O4/g-C3 N4样品,并考察其对甲基橙的可见光催化降解性能.结果表明,与NiFe2 O4和g-C3 N4样品相比,负载型NiFe2 O4/g-C3 N4样品对甲基橙具有更好的光催化降解活性,且催化活性随着NiFe2 O4负载量增大(0.5~5.0wt;)而呈现先增大再减小的趋势.NiFe2 O4负载量2.0wt;的样品2-NiFe/CN在可见光照射下对浓度5 mg·L-1的甲基橙表现出最好的降解活性和稳定性.这是因为能带宽度小(1.5 eV)的NiFe2 O4与能带宽度大(2.7 eV)的g-C3 N4形成的异质结催化剂NiFe2 O4/g-C3 N4,有效地促进光生载流子在二者界面快速传递和光生电子-空穴对的有效分离.  相似文献   

12.
以Ni3[Ge2O5](OH)4为载体,氟钛酸铵为原料,采用水热辅助液相沉积法制备了纳米TiO2/ Ni3[Ge2O5](OH)4复合材料。通过X射线衍射(XRD)、拉曼光谱分析(RM)、场发射扫描电子显微镜(FE-SEM)、高分辨透射电镜(HTEM)、紫外-可见吸收光谱(UV-Vis)等表征手段对样品的物相组成、结构特性及微观形貌做了检测分析,并且探究了不同二氧化钛负载量对纳米TiO2/Ni3[Ge2O5](OH)4复合材料光降解亚甲基蓝能力的影响规律。结果表明,实验实现了纳米TiO2与Ni3[Ge2O5](OH)4的紧密复合与有效分散,TiO2为锐钛矿型结构,平均粒径20 nm。该复合材料能够有效抑制光生载流子的复合,改善材料的吸附性能,提高材料的光催化效率。当复合材料中TiO2与Ni3[Ge2O5](OH)4的摩尔比为3.1∶1时,材料对亚甲基蓝的光催化效率最高,90 min亚甲基蓝的光降解率为99.81%。  相似文献   

13.
以ZnO及WO3为前驱反应物,制备了一系列不同ZnWO4含量的ZnWO4-ZnO复合光催化剂.利用X射线衍射、扫描电子显微镜及X射线能谱仪等手段对催化剂进行表征,并以紫外光为光源,罗丹明B为模拟污染物,评价催化剂的活性.结果表明,热处理温度及ZnWO4与ZnO摩尔比对催化剂光催化降解罗丹明B的活性影响显著.当复合4mol;ZnWO4,并于850 ℃煅烧所制得的ZnWO4-ZnO催化剂活性最高,比纯ZnO高出25;.这是因为ZnWO4的复合可抑制ZnO晶粒长大,提高光生电子与空穴的分离效率,进而改善其光催化活性.  相似文献   

14.
采用水热法制备ZnO/BiVO4复合光催化剂,研究了ZnO复合方式(直接和原位)对合成ZnO/BiVO4光催化剂性能的影响.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、BET、紫外-可见分光光度计等检测手段对产物的晶体结构、微观形貌、比表面积和光吸收特性进行了表征.结果表明:ZnO的复合对产物的组成及形貌均有影响,复合产物中有V2 O5、Bi2 O3生成,但仍以单斜BiVO4为主.与纯BiVO4相比,复合后的BiVO4结晶度变差、粒度变小,但光催化性能提高.采用直接复合法制备的ZnO/BiVO4光催化性能提高更明显,在高压汞灯照射240 min时,亚甲蓝的降解率达90.4;,相同条件下纯BiVO4对亚甲蓝的降解率仅为82.2;.  相似文献   

15.
采用浸渍法制备不同掺杂量的负载型光催化剂Ni/g-C3N4,并考察其在可见光照下对亚甲基蓝的光降解性能.利用XRD、FT-IR、SEM、TEM、XPS、N2-sorption和ICP-OES等手段表征Ni/g-C3N4样品.研究表明,Ni/g-C3N4催化剂的光催化活性随着金属镍粒子掺杂量的增加而增大,随着亚甲基蓝浓度的增大而减小,其中金属镍掺杂量4.0wt;的样品4-Ni/g-C3N4表现出优异的光催化活性和光降解稳定性.这是由于4-Ni/g-C3N4样品的光降解过程中产生了超氧自由基、羟基自由基和空穴等活性物质,其中超氧自由基起主导作用.金属Ni0离子在光生电子作用下生成Ni2+,O2分子得到电子生成O2·-自由基.这些活性物质的产生有助于光生电子-空穴对的分离和抑制其复合速率,从而实现可见光下高效催化降解亚甲基蓝.  相似文献   

16.
在高压汞灯辐照下,通过插入反应将H2Fe2Ti3O10与n-C3H7NH2/C2H5OH和TiO2溶胶制备出H2Fe2Ti3O10/TiO2插层复合物.插入TiO2的层状钙钛矿化合物H2Fe2Ti3O10在UV-vis辐照下表现出高活性.实验结果表明H2Fe2Ti3O10/TiO2作为光催化剂在可见光(λ>420nm)下辐照24h,降解甲基橙的速率为59.0;.与相同条件下降解率只有24;的商用光催化剂TiO2(Degussa P-25)相比,H2Fe2Ti3O10/TiO2表现出了更高的光催化活性.  相似文献   

17.
采用简单的共沉淀法制备了新型ZnSn(OH)6/SrSn(OH)6复合光催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外可见-漫反射吸收光谱(UV-Vis)、N2吸附脱附、扫描电镜(SEM)、透射电镜(TEM)对样品的结构、形貌和光吸收性质进行了表征,并以甲苯为目标污染物对其光催化性能进行评价。结果表明,与纯相SrSn(OH)6和ZnSn(OH)6相比,复合材料ZnSn(OH)6/SrSn(OH)6的紫外光吸收能力显著增强,光生载流子的复合效率降低,进而增强了其光催化降解甲苯的效率。复合样品ZSH/SSH-10摩尔比为10%对甲苯的降解率达到58%,是SrSn(OH)6单体的1.35倍。循环使用5次后,ZSH/SSH-10的降解率仍保持51%以上,说明该催化剂具有良好的循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号