首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

2.
The effects of substrate surface roughness, joint thickness, time above liquidus, and testing temperature on the chevron notch fracture toughness of Cu/96.5Sn-3.5Ag solder joints are investigated. Of these four variables,only the surface roughness of the copper surfaces to be soldered has a significant effect. A minimum fracture toughness is obtained when the average surface roughness, Ra, is between 0.2 and 1.0 μm. This encompasses the surface roughnesses produced by many cold forming operations. Decreasing the roughness to 0.04 μm increases the fracture toughness from 4.7 to 11.0 MPa√m, an improvement of 135%. Increasing the roughness to 2.0 μm increases the fracture toughness to 8.8 MPa√m, an improvement of 80%. We attribute these effects to the increased growth stresses that develop in the brittle intermetallic layer when the size scale of individual intermetallic particles is comparable to the size of the roughness features of the substrate. Two models that describe how these growth stresses might develop are provided.  相似文献   

3.
Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ∼100 μm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.  相似文献   

4.
Equations are presented for predicting tensile properties as functions of temperature and strain rate for the bulk-eutectic 96.5Sn-3.5Ag lead-free solder. At 25°C, we obtained 49.0 GPa for Young’s modulus based on acoustic measurements, which is higher than most of those measured by tensile tests that are subject to viscoelastic creep; 23.1 MPa and 26.3 MPa for yield stress and ultimate tensile strength (UTS) of specimens that are cast, annealed, and aged at a strain rate of 2.0×10−4 s−1; 48.7% for total elongation, which is larger than most of the reported values. The presence of “initial defects” in the specimens, such as porosity and void, might cause the reduction in measured total elongations. Contribution of NIST, an agency of the U.S. government, not subject to copyright in the United States.  相似文献   

5.
This work investigates the effect of interfacial reaction on the mechanical strength of two types of solder joints, Sn-3.5Ag/Ni-P and Sn-37Pb/Ni-P. The tensile strength and fracture behavior of the joints under different thermal aging conditions have been studied. It is observed that the tensile strength decreases with increasing aging temperature and duration. Associated with the tensile strength decrease is the transition of failure modes from within the bulk solder in the as-soldered condition toward failures at the interface between the solder and the intermetallic compounds (IMCs). For the same aging treatment, the strength of the Sn-3.5Ag/Ni-P joint degrades faster than that of Sn-37Pb/Ni-P. The difference between the two types of joints can be explained by the difference in their interfacial reaction and growth kinetics. An empirical relation is established between the solder joint strength and the Ni3Sn4 intermetallic compound thickness.  相似文献   

6.
Composite solders offer improved properties compared to non-composite solders. Ni reinforced composite solder was prepared by mechanically dispersing 15 vol.% of Ni particles into eutectic Sn-3.5Ag solder paste. The average size of the Ni particle reinforcements was approximately 5 microns. The morphology, size and distribution of the reinforcing phase were characterized metallographically. Solid-state isothermal aging study was performed on small realistic size solder joints to study the formation and growth of the intermetallic (IM) layers at Ni reinforcement/solder and Cu substrate/solder interfaces. Effects of reflow on microstructure and solderability, were studied using Cu substrates. Regarding solderability, the wetting angle of multiple reflowed Ni reinforced composite solder was compared to the solder matrix alloy, eutectic Sn-3.5Ag. General findings of this study revealed that Ni particle reinforced composite solder has comparable wetting characteristics to eutectic Sn-3.5Ag solder. Significant IM layers growth was observed in the Ni composite solder joint under isothermal aging at 150 C. Microstructural evolution was insignificant when aging temperature was lower than 100 C. Multiple reflow did not significantly change the microstructure in Ni composite solder joint.  相似文献   

7.
The reaction between Cu and the Sn-Ag solders doped with different amounts of Ni is studied. Four different solders with the Ag concentration fixed at 3.5 wt.% and Ni concentrations varied between 0.0 wt.% and 1.0 wt.% are used. In contrast to the reaction between Ni and the Sn-Ag solders doped with different amounts of Cu, the type of intermetallic compound formed does not depend on the Ni concentration. The compound Cu6Sn5 forms for all the Ni concentrations used. For the Ni-doped solders, the Cu6Sn5 phase contains a small amount of Ni. The compound Cu3Sn appears subsequently between Cu6Sn5 and Cu as the reaction time increases. The addition of Ni has the effect of substantially increasing the amount of intermetallic compound at the interface. The addition of Ni also produces two distinct Cu6Sn5 regions at the interface. The outer region contains more Ni, and the inner region contains less Ni. This study also finds that, during solid-state aging, the growth of Cu3Sn becomes slower when Ni is added to the solder. The findings of this study are rationalized using the Cu-Ni-Sn isotherm.  相似文献   

8.
The microstructure and shear strength characteristics of pure Sn and the eutectic compositions of Sn-37Pb, Sn-0.7Cu, and Sn-3.5Ag prepared under identical reflow conditions but subjected to two different cooling conditions were evaluated at room temperature. For the four solders, the ultimate shear strength increased with increasing strain rate from 10−5 s−1 to 10−1 s−1. Decreasing the cooling rate tended to decrease the ultimate shear strength for both the Sn-0.7Cu and Sn-3.5Ag solders. The effects of work hardening resulting from increased strain rate were more prevalent in quench-cooled (QC) samples.  相似文献   

9.
In this study, the approach of composite solder using eutectic Sn-3.5Ag solder and Co was tried. Co particles and Sn-3.5Ag solder paste were mechanically mixed at Co weight fractions from 0.1% to 2.0%. For the Co-mixed Sn-3.5Ag solder pastes, their melting temperatures and spreading areas were measured. The solder pastes were stencil printed on test substrates and reflowed to form solder bumps. Ball shear test was performed to examine shear strength of Co-reinforced Sn-3.5Ag solder bumps. As a result, Co addition up to 2 wt.% did not alter the melting temperature under heating but reduced undercooling. The maximum shear strength of Co-reinforced Sn-3.5Ag solder bumps increased by 28% compared to normal ones. The increase in shear strength can be attributed to the (Cu,Co)3Sn2 intermetallic compounds.  相似文献   

10.
The reliability of the eutectic Sn37Pb (63%Sn37%Pb) and Sn3.5Ag (96.5%Sn3.5%Ag) solder bumps with an under bump metallization (UBM) consisting of an electroless Ni(P) plus a thin layer of Au was evaluated following isothermal aging at 150 °C. All the solder bumps remained intact after 1500 h aging at 150 °C. Solder bump microstructure evolution and interface structure change during isothermal aging were observed and correlated with the solder bump shear strength and failure modes. Cohesive solder failure was the only failure mode for the eutectic Sn37Pb solder bump, while partial cohesive solder failure and partial Ni(P) UBM/Al metallization interfacial delamination was the main failure mode for eutectic Sn3.5Ag solder bump.  相似文献   

11.
In order to evaluate the withdrawal force curve that is shown in a typical wetting balance curve, a number of wetting balance tests were conducted in this study using Sn-37%Pb solder and copper plate samples whose shapes and immersion depths were varied for the purpose of this study. In the shape-effect experiment using vertical copper plate samples whose bottom corners were cut out in rectangles, a new step-like section appeared in the downfall segment of the wetting balance curve. According to the depth-effect experiment, the amount of time needed for the curve to reach the pinnacle of the withdrawal force curve increased in proportion to the immersion depths of the plates while the span of time taken for the drop of the curve was not affected by the depth. The decrease of the maximum measured force under the condition of a deeper immersion depth is attributable to the buoyancy force that also increases as the immersion depth gets deeper. It can be concluded from the results that: 1) the ascending profile of the withdrawal force curve in the typical force-time curve represents the sliding of solder on plates; 2) the highest point on the withdrawal force curve stands for the state in which the sliding solder meets the bottom corners of a normal vertical plate  相似文献   

12.
This study investigates the interfacial reactions between electroless Ni-Cu-P deposit and 63Sn-37Pb solder bumps under various reflow conditions. The morphology of the intermetallic compounds formed at the Ni-Cu-P/Sn-Pb interface changes with respect to reflow cycle, reflow temperature, and reflow time. The (Ni,Cu)3Sn4 compounds with three different morphologies of fine grain, whisker, and polygonal grain form at the Ni-Cu-P/Sn-Pb interface after reflow at 220°C for 15 s. The whisker-shape and polygonal grains detach from the Ni-Cu-P deposit into the Sn-Pb solder during multiple reflows. The (Ni,Cu)3Sn4 compound grows rapidly when the reflow temperature is above the Ni-Sn eutectic temperature, 231°C. A continuous (Ni,Cu)3Sn4 layer forms after reflow at 220°C for 10 min. A 4.5 μm Ni-Cu-P deposit prevents the interdiffusion of Sn and Al atoms across the Ni-Cu-P deposit after 10 reflow cycles at 220°C for 15 s and after reflow at 220°C for 10 min.  相似文献   

13.
汤清华 Wu.  L 《电子器件》1999,22(2):87-92
本文研究了热处理时间对不同组分的42Sn58Bi-96.5Sn3.5Ag焊料疲劳性能的影响,研究发现适当的热处理时间能提高焊点的机械强度,延长焊点的疲劳寿命。  相似文献   

14.
Fundamental understanding of the relationship among process, microstructure, and mechanical properties is essential to solder alloy design, soldering process development, and joint reliability prediction and optimization. This research focused on the process-structure-property relationship in eutectic Sn-Ag/Cu solder joints. As a Pb-free alternative, eutectic Sn-Ag solder offers enhanced mechanical properties, good wettability on Cu and Cu alloys, and the potential for a broader range of application compared to eutectic Sn-Pb solder. The relationship between soldering process parameters (soldering temperature, reflow time, and cooling rate) and joint microstructure was studied systemati-cally. Microhardness, tensile shear strength, and shear creep strength were measured and the relationship between the joint microstructures and mechani-cal properties was determined. Based on these results, low soldering tempera-tures, fast cooling rates, and short reflow times are suggested for producing joints with the best shear strength, ductility, and creep resistance.  相似文献   

15.
The interfacial reaction between electroless Ni(P) under-bump metallization (UBM) and solders is studied. A P-rich layer forms in the UBM along the solder side after reflow and thermal aging. Crack formation inside the P-rich layer can sometimes penetrate throughout the entire UBM layer structure. The Ni(P) UBM degradation occurs earlier in the Sn3.5Ag solder than in Sn37Pb because of its higher reflow temperature. Despite the formation of a P-rich layer and cracks inside the UBM, it still keeps its original function within the high-temperature storage period in this study. Explanations for the formation of the P-rich layer and cracks in the UBM are outlined along with explanations for the Ni(P) UBM degradation process.  相似文献   

16.
The effects of small additions of copper to the aging kinetics of eutectic tin-silver solder joints were studied. Aging of joints made with tin-silver solder containing 0.5% and 0.7% copper was carried out at various temperatures ranging to 180°C, at various times ranging to 4000 h. The small differences in the compositions of the two types of solder alloys studied did not produce any significant differences in the aging kinetics of the intermetallic layer, although a noticeable difference in the aging kinetics of the Ag3Sn particles present in the solder was observed. The growth rates of all intermetallics present in the solder joint were insignificant below 120°C. The results obtained were compared to earlier aging experiments involving eutectic tin-silver solder without any copper. It was found that the activation energy of the Cu6Sn5 intermetallic layer growth was about 10% less in the tin-silver solder joints with the small additions of copper added to the composition. Copper from the substrate tended to diffuse through the Cu-Sn intermetallic layer faster than tin from the solder.  相似文献   

17.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

18.
This work summarizes the interfacial reaction between lead-free solder Sn-3.5Ag and electrolessly plated Ni-P metallization in terms of morphology and growth kinetics of the intermetallic compounds (IMC). Comparison with pure Ni metallization is made in order to clarify the role of P in the solder reaction. During reflow, the IMCs formed with the Ni-P under-bump metallization (UBM) exist in chunky crystal blocks and small crystal agglomerates, while the ones with the sputtered Ni UBM exhibit uniformly scallop grains with faceted surfaces. The IMC thickness increases with reflow time following approximately a t1/3 power law for both systems. The IMC growth rate is higher with the Ni-P UBM than the Ni UBM. The thickness of the Ni3Sn4 layer increases linearly with the square root of thermal aging time, indicating that the growth of the IMCs is a diffusion-controlled process. The activation energy for Ni3Sn4 growth in solid-state reaction is found to be 110 kJ/mol and 91 kJ/mol for the Ni-P and sputtered Ni UBMs, respectively. Kirkendall voids are detected inside the Ni3P layer in the Sn-3.5Ag/Ni-P system. No such voids are found in the Sn-3.5Ag/Ni system.  相似文献   

19.
A ZrO2 nanoparticle strengthened lead-free Sn-3,5Ag-ZrO2 solder was prepared by mechanically stirring ZrO2 nanoparticles into the molten melt of eutectic Sn-3.5Ag alloy. The influence of ZrO2 nanoparticles on the eutectic solidification process, in particular, the formation of Ag3Sn intermetallic compounds (IMCs) and the associated microstructure that forms and microhardness of Sn-3.5Ag solder, was systematically investigated. The addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn IMCs due to the strong adsorption effect of the ZrO2 nanoparticles. The refined Ag3Sn IMCs increase the Vicker’s microhardness of the prepared Sn-3.5Ag-ZrO2 solder, which corresponds well with the prediction of the classic theory of dispersion strengthening.  相似文献   

20.
The effect of moderate electric current density (1 × 103 to 3 × 103 A/cm2) on the mechanical properties of Ni-P/Sn-3.5Ag/Ni-P and Ni/Sn-3.5Ag/Ni solder joints was investigated using a microtensile test. Thermal aging was carried out at 160°C for 100 h while the current was passed. The interfacial microstructure and intermetallic compound (IMC) growth were analyzed. It was found that, at these levels of current density, there were no observable voids or hillocks. Samples aged at 160°C without current stressing failed mostly inside the bulk solder with significant prior plastic deformation. The passage of current was found to cause brittle failure of the solder joints and this tendency for brittle failure increased with increasing current density. Fractographic analysis showed that, in most of the electrically stressed samples, fracture occurred at the interface region between the solder and the joining metals. The critical current density that caused brittle fracture was about 2 × 103 A/cm2. Once brittle fracture occurred, the tensile toughness, defined as the energy per unit fractured area, was usually lower than ~5 kJ/m2, compared with the case of ductile fracture where this value was typically greater than ~9 kJ/m2. When comparing the two types of joint, the brittle failure was found to be more severe with the Ni than with the Ni-P joint. This work also found that the passage of electric current affects the IMC growth rate more significantly in the Ni than in the Ni-P joint. In the case of the Ni joint, the Ni3Sn4 IMC at the anode side was appreciably thicker than that formed at the cathode side. However, in the case of electroless Ni-P metallization, this difference was much smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号