首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We report here a method for the identification of free N-terminal peptide of in gel digested isolated proteins. It is based in the difference between the isotopic ion distribution of N-terminal peptide and internal peptides. After guanidination of lysine residues, the primary amino groups of the gel-entrapped protein are blocked with an equimolar mixture of normal and deuterated acetic anhydride. Upon MS analysis internal peptides display a normal isotopic ion distribution while the N-terminal peptide shows a complex isotopic ion distribution.  相似文献   

2.
The N-terminal sequence is important for the identification of a protein and the confirmation of its N-terminal processing. Although mass spectrometry (MS) is a sensitive and high-throughput method to sequence and identify peptides and proteins, N-terminal peptides, diluted among most of the peptides that do not originate at the N-termini, are not easy to identify directly with MS. To develop a simple and rapid method to identify and sequence the N-terminal peptide of a protein, a new strategy based on specific sulfonation of terminal amino groups and selective monitoring of the sulfonated peptide was introduced. After a protein had been guanidinated, 2-sulfobenzoylated, and reduced, it was digested with trypsin and analyzed by MS. Because of the strong acidity of sulfonic groups and the specific sulfonation of alpha-amino groups, the sulfonated N-terminal peptide dominated as base peak in the negative mode peptide mass fingerprint (PMF) and was easy to identify. The N-terminal peptide was then selected as precursor ion for tandem mass spectrometric (MS/MS) analysis. Four proteins were tested with this method and their N-terminal peptides were successfully recognized and sequenced. The results suggest that the addition of a sulfonic acid group facilitates the identification and de novo sequencing of N-terminal peptides.  相似文献   

3.
De novo analysis of protein N-terminal sequence is important for identification of N-terminal proteolytic processing such as N-terminal methionine or signal peptide removal, or for the genome annotation of uncharacterized proteins. We introduce a de novo sequencing method of protein N terminus utilizing matrix-assisted laser desorption/ionization (MALDI) signal enhancing picolinamidination with bromine isotopic tag incorporated to the N terminus. The doublet signature of bromine in the tandem mass (MS/MS) spectrum distinguished N-terminal ion series from C-terminal ion series, facilitating de novo N-terminal sequencing of protein. The dual advantage of MALDI signal enhancement by the basic picolinamidine and b-ion selection aided by Br signature is demonstrated using a variety of peptides. The N-terminal sequences of myoglobin and hemoglobin as model proteins were determined by incorporating the Br tag to the N terminus of the proteins and obtaining a series of b-ions with Br signature by MS/MS analysis after chymotryptic digestion of the tagged proteins. The N-terminal peptide was selected for MS/MS analysis from the chymotryptic digest based on the Br signature in the mass spectrum. Identification of phosphorylation site as well as N-terminal sequencing of a phosphopeptide was straightforward.  相似文献   

4.
A novel method for peptide sequencing by matrix-assisted laser desorption/ionization mass spectrometry with a time-of-flight/time-of-flight analyzer (MALDI-TOF/TOF) is presented. A stable isotope label introduced in the peptide N-terminus by derivatization, using a 1:1 mixture of acetic anhydride and deuterated acetic anhydride, allows for easy and unambiguous identification of ions belonging either to the N- or the C-terminal ion series in the product ion spectrum, making sequence assignment significantly simplified. The good performance of this technique was shown by successful sequencing of the contents of several peptide maps. A similar approach was recently applied to nanoelectrospray ionization (nanoESI) and nano-liquid chromatography/tandem mass spectrometry (LC/MS/MS). The MALDI-TOF/TOF technique allows for fast, direct sequencing of modified peptides in proteomics samples, and is complementary to the nanoESI and nanoLC/MS/MS approaches.  相似文献   

5.
Here, we explore a de novo sequencing strategy in which we combine Lys-N protein digestion with differential isotopic dimethyl labeling to facilitate the (de novo) identification of multiply charged peptides in ESI-MS, both under CID and ETD conditions. For a large fraction of the Lys-N generated peptides, all primary amines are present at the N-terminal lysine, enabling specific labeling of the N-terminus. Differential derivatization of only the peptide N-terminus in combination with the simultaneous fragmentation of the corresponding isotopologues allows the straightforward distinction of N-terminal fragments from C-terminal and internal fragments. Furthermore, also singly and multiply charged N-terminal fragments can easily be distinguished due to the mass differences of the isotope labeled fragment pairs. As a proof of concept, we applied this approach to proteins isolated from an avocado fruit, and were able to partially de novo sequence and correctly align, with green plant homologues, a previously uncharacterized avocado ascorbate peroxidase.  相似文献   

6.
A novel method is reported for rapid protein identification by the analysis of tryptic peptides using desorption electrospray ionisation (DESI) coupled with hyphenated ion mobility spectrometry and quadrupole time-of-flight mass spectrometry (IMS/Q-ToF-MS). Confident protein identification is demonstrated for the analysis of tryptically digested bovine serum albumin (BSA), with no sample pre-treatment or clean-up. Electrophoretic ion mobility separation of ions generated by DESI allowed examination of charge-state and mobility distributions for tryptic peptide mixtures. Selective interrogation of singly charged ions allowed isobaric peptide responses to be distinguished, along with a reduction in spectral noise. The mobility-selected singly charged peptide responses were presented as a pseudo-peptide mass fingerprint (p-PMF) for protein database searching. Comparative data are shown for electrospray ionisation (ESI) of the BSA digest, without sample clean-up, from which confident protein identification could not be made. Implications for the robustness of the DESI method, together with potential insights into mechanisms for DESI of proteolytic digests, are discussed.  相似文献   

7.
The ability to detect protein variants and post-translational modifications by mass spectrometry has become increasingly important. Unfortunately, the ability to detect variants in large intact proteins (>80,000 Da) is limited. Even in the analysis of smaller proteins, algorithms are required to determine the presence of a 2 Da mass shift in an intact 13 kDa protein because the isotopic distribution of the multiply charged ions of the variant overlaps the wild-type distribution. Fortunately, most modern instruments are capable of detecting variants in tryptic peptides derived from intact proteins. If a single common variant protein is known, the presence of a variant tryptic peptide can be easily demonstrated. A more difficult issue is the case where a multiplicity of peptides with multiple amino acid substitutions can be associated with pathology. In these cases a decrease in the relative amount of a variant peptide relative to other internal tryptic fragments would be diagnostic. However, the variability associated with the analysis of in-gel or solution digests of proteins, related to efficiencies in digestion, extraction and ionization, confounds variant analysis at the peptide level. A strategy was developed to normalize for this variability by utilizing multiple isotopically labeled internal standards for multiple peptides derived from the same protein. Erythrocyte spectrin from 36 normal and 25 abnormal osmotic fragility samples was analyzed as a test case. Three isotopically labeled target peptides comprising the alpha/beta-spectrin self-association sites were added to purified digested alpha-spectrin. The utilization of multiple internal standards demonstrates the capability to normalize for sample variability due to ionization efficiency, solvent effects, digestion and extraction efficiency.  相似文献   

8.
Breen et al. (Electrophoresis 2000; 21: 2243) proposed a method for finding monoisotopic peptide peaks in mass spectra based on an approximation of the distribution of different isotopic variants of a peptide by a Poisson distribution. They developed the method using all protein sequences from the SWISS-PROT database. We investigate the suitability of this method to predict the isotopic distribution in an environment which enriches for peptides carrying sulphur. More specifically, we focus on mass spectra obtained by a COmbined FRActional DIagonal Chromatography (COFRADIC) approach, developed by Gevaert et al. (Nature Biotechnology 2003; 21: 566), targeting a specific subset of peptides, in this case the N-terminal peptides. One can therefore ask whether the original results of Breen et al. apply to spectra generated by the particular COFRADIC method. We investigate whether the proposed approximation holds for N-terminal peptides. We also evaluate whether ignoring sulphur atoms while developing the approximation, as proposed by Breen et al., does not increase the risk of missing monoisotopic peaks corresponding to sulphur-containing peptides. Finally, we check the sensitivity of the quality of the approximation to optimization criteria used in the development process. The results are not simply restricted to a COFRADIC setting but are also applicable more generally, for any method which enriches for sulphur-containing peptides.  相似文献   

9.
Isotope-coded affinity tags (ICATs) were employed to identify and quantitate changes in protein expression between control and camptothecin-treated mouse cortical neurons. Proteins extracted from control cortical neurons and those treated with camptothecin were labeled with the light and heavy isotopic versions of the ICAT reagents, respectively. ICAT-labeled samples were combined, proteolytically digested, and the derivatized peptides isolated using immobilized avidin chromatography. The peptides thus isolated were analyzed by reversed-phase liquid chromatography coupled directly to either a conventional ion-trap mass spectrometer (IT-MS) or a Fourier transform ion cyclotron resonance mass spectrometer (FTICR). While a majority of the peptide identifications were accomplished using IT-MS, FTICR was used to quantitate the relative abundances of the ICAT-labeled peptides taking advantage of its high resolution, sensitivity, and duty cycle. By using this combination of MS technologies we have thus far identified and quantified the expression of greater than 125 proteins from control and camptothecin-treated mouse cortical neurons. While proteins from most functional classes of proteins were identified, a particularly large percentage of the enzymes involved in glycolysis and the tricarboxylic acid cycle were observed.  相似文献   

10.
Cleavable isotope-coded affinity tag (cICAT) reagents were utilized to identify and quantitate protein expression differences in control and inorganic phosphate-treated murine MC3T3-E1 osteoblast cells. Proteins extracted from control and treated cells were labeled with the light and heavy isotopic versions of cICAT reagents, respectively. The cICAT-labeled samples were combined, proteolytically digested, and the cICAT-derivatized peptides isolated using immobilized avidin chromatography. The cICAT-labeled peptides were resolved into 96 fractions by strong cation-exchange (SCX) liquid chromatography (LC). Analysis of the SCX-LC cICAT peptide fractions by microcapillary reversed-phase LC-tandem mass spectrometry resulted in the identification and quantitation of 7227 unique peptides corresponding to 2501 proteins, or roughly 9% of the proteins currently predicted to be encoded by the mouse genome. A false positive analysis indicated a 98% confidence in the peptide identifications. To corroborate changes in abundance measured by cICAT with those detectable in traditionally prepared cell lysate, we chose to analyze cyclin D1. Cyclin D1 has been previously identified as a phosphate-responsive gene and was likewise identified as a phosphate-responsive protein in the current analysis. The 1.76-fold increase in abundance in cyclin D1 determined from cICAT corresponds well with the 2.41-fold increase as determined by Western blotting. These results demonstrate that quantitative proteomics is capable of providing a quantitative view of thousands of proteins in mammalian cells within a defined set of experiments.  相似文献   

11.
The study of peptide fragmentation is important to the understanding of chemical processes occurring in the gas phase and the more practical concern of peptide identification for proteomic analysis. Using the mobile proton model as a framework, we explore the effect of amino-group modifications on peptide fragmentation. Three aldehydes are used to transform the peptides' primary amino groups into either a dimethylamino or a heterocyclic structure (five- or six-membered). The observed fragmentation patterns deviate strongly from those observed for the analogous underivatised peptides. In particular, the a1 ion is the base peak in most tandem mass spectra of the derivatised peptides. The a1 ion intensity depends strongly on the N-terminal amino acid, with tyrosine and phenylalanine having the strongest enhancement. Despite the change in fragmentation patterns of the derivatised peptides, they still provide high-quality tandem mass spectra that, in many cases, are more amenable to database searching than the spectra of underivatised peptides. In addition, the reliable presence of the a1 ion facilitates rapid quantitative measurements using the multiple reaction monitoring approach.  相似文献   

12.
A study has been undertaken to evaluate the usefulness of MALDI Q-TOF data for protein identification. The comparison of MS data of protein digests obtained on a conventional MALDI TOF instrument to the MS data from the MALDI Q-TOF reveal peptide patterns with similar intensity ratios. However, comparison of MS/MS Q-TOF data produced by nanoelectrospray versus MALDI reveals striking differences. Peptide fragment ions obtained from doubly charged precursors produced by nanoelectrospray are mainly y-type ions with some b-ions in the lower mass range. In contrast, peptide fragment ions produced from the singly charged ions originating from the MALDI source are a mixture of y-, b- and a-ions accompanied by ions resulting from neutral loss of ammonia or water. The ratio and intensity of these fragment ions is found to be strongly sequence dependent for MALDI generated ions. The singly charged peptides generated by MALDI show a preferential cleavage of the C-terminal bond of acidic residues aspartic and glutamic acid and the N-terminal bond of proline. This preferential cleavage can be explained by the mobile proton model and is present in peptides that contain both arginine and an acidic amino acid. The MALDI Q-TOF MS/MS data of 24 out of 26 proteolytic peptides produced by trypsin or Asp-N digestions were successfully used for protein identification via database searching, thus indicating the general usefulness of the data for protein identification. De novo sequencing using a mixture of 160/18O water during digestion has been explored and de novo sequences for a number of peptides have been obtained.  相似文献   

13.
Tandem mass spectrometry of a mixture of two peptides that differ from each other by a single mass unit due to mutation is presented. The mutant beta-globin of hemoglobin Hoshida is present along with the normal counterpart, and the amino acid substitution of glutamine for glutamic acid is located within tryptic peptide T5 of M(r) 2057. 9. The mass of the mutated peptide is 1 u lower. In the isotopic cluster for the doubly charged ion of the peptide T5, the resolved ion with mass of 1030.0 represents the normal peptide with 93 (12)C atoms and the mutated one with 92 (12)C and one (13)C atoms. Collision-induced dissociation (CID) of this composite ion identified the mutation by presenting a key fragment derived from the (12)C-only mutant peptide, as reported in a previous study. Similarly, when an ion containing multiple (13)C atoms was selected as a precursor for CID, the mutation could be identified, even in large fragments, by a marked change in the shape of the isotopic cluster for the consecutive product ions. This study demonstrates the merit of selecting a resolved ion rather than the whole isotopic cluster as a precursor in the CID measurements of large peptides or proteins for characterizing heterozygous mutations.  相似文献   

14.
The peptide mass fingerprinting technique is commonly used for identifying proteins analyzed by mass spectrometry (MS) after enzymatic digestion. Our goal is to build a theoretical model that predicts the mass spectra of such digestion products in order to improve the identification and characterization of proteins using this technique. We present here the first step towards a full MS model. We have modeled MS spectra using the atomic composition of peptides and evaluated the influence that this composition may have on the MS signals. Peptides deduced from the SWISS-PROT protein sequence database were used for the calculation. To validate the model, the variability of the peptide mass distribution in SWISS-PROT was compared to two theoretical, randomly generated databases. Functions have been built that describe the behavior of the isotopic distribution according to the mass of peptides. The variability of these functions was analyzed. In particular, the influence of sulfur was studied. This work, while representing only a first step in the construction of an MS model, yields immediate practical results, as the new isotopic distribution model significantly improves peak detection in MS spectra used by protein identification algorithms.  相似文献   

15.
Recently various methods for the N-terminal sulfonation of peptides have been developed for the mass spectrometric analyses of proteomic samples to facilitate de novo sequencing of the peptides produced. This paper describes the isotope-coded N-terminal sulfonation (ICenS) of peptides; this procedure allows both de novo peptide sequencing and quantitative proteomics to be studied simultaneously. As N-terminal sulfonation reagents, 13C-labeled 4-sulfophenyl[13C6]isothiocyanate (13C-SPITC) and unlabeled 4-sulfophenyl isothiocyanate (12C-SPITC) were synthesized. The experimental and reference peptide mixtures were derivatized independently using 13C-SPITC and 12C-SPITC and then combined to generate an isotopically labeled peptide mixture in which each isotopic pair differs in mass by 6 Da. Capillary reverse-phase liquid chromatography/tandem mass spectrometry experiments on the resulting peptide mixtures revealed several immediate advantages of ICenS in addition to the de novo sequencing capability of N-terminal sulfonation, namely, differentiation between N-terminal sulfonated peptides and unmodified peptides in mass spectra, differentiation between N- and C-terminal fragments in tandem mass spectra of multiply protonated peptides by comparing fragmentations of the isotopic pairs, and relative peptide quantification between proteome samples. We demonstrate that the combination of N-terminal sulfonation and isotope coding in the mass spectrometric analysis of proteomic samples is a viable method that overcomes many problems associated with current N-terminal sulfonation methods.  相似文献   

16.
Al-Lawati H  Watts P  Welham KJ 《The Analyst》2006,131(5):656-663
A highly efficient protein digestion device has been fabricated using commercially available immobilized trypsin on agarose beads, packed into a silica capillary and connected either directly to an electrospray mass spectrometer via a 'microtight T' connector, from which aqueous acetic acid (0.2%) was pumped, or via a monolithic column connected to the mass spectrometer ion source. Six proteins with molecular mass ranging from 2848 to 77703 Da were digested completely using this system. In the second set of experiments a short monolithic separation column was placed after the immobilized trypsin capillary and partial separation of the generated peptides was obtained. The detection limits were increased from the micromol to pmol range by utilization of this separation column. Gradient elution, using a binary HPLC pump and a flow splitter, was used to optimize the peptide separation. This provided significantly enhanced resolution of the tryptic peptides but increased the analysis time to 30 minutes.  相似文献   

17.
An algorithm for interpretation of product ion spectra of peptides generated from ion trap mass spectrometry is developed for de novo amino acid sequencing of peptides for the purpose of protein identification. It is based on a multi-pass analysis of product ion data using a rigorous data extraction and sequence interpretation protocol in the initial pass. The extraction/interpretation algorithm becomes more relaxed in subsequent passes, considering more of the fragment ions, and potentially more sequence candidates. The possible peptide sequences generated by the algorithm are scored according to those sequences which best explain the fragment ion spectrum. These sequences are searched against a protein database using a BLAST search engine to find likely protein candidates. The method is also suitable for locating and determining protein modifications, and can be applied to de novo interpretation of peptide fragment ions in the tandem mass (MS/MS) spectrum produced from a mixture of two peptides having similar nominal mass, but different sequences. Using a known protein, bovine serum albumin, as an example, it is illustrated that this method is rapid and efficient for MS/MS spectral interpretation. This method combined with BLAST programs is then applied to search homologies and to generate information on post-translational modifications of an unknown protein isolated from shark cartilage that does not have a complete genome or proteome database.  相似文献   

18.
The fragmentations of [M+H]+ and [M+Na]+ adducts of neutral peptides with blocked N- and C-termini have been investigated using electrospray ion trap mass spectrometry. The N-termini of these synthetically designed peptides are blocked with a tertiarybutyloxycarbonyl (Boc) group, and the C-termini are esterified. These peptides do not possess side chains that are capable of complexation and hence the backbone amide units are the sole sites of protonation and metallation. The cleavage patterns of the protonated peptides are strikingly different from those of sodium ion adducts. While the loss of the N-terminal blocking group occurs quite readily in the case of MS/MS of [M+Na]+, the cleavage of the C-terminal methoxy group seems to be a facile process in the case of MS/MS of [M+H]+ * Fragmentation of the protonated adducts yields only bn ions, while yn and a(n) ions are predominantly formed from the fragmentation of sodium ion adducts. The a(n) ions arising from the fragmentation of [M+Na](+) lack the N-terminal Boc group (and are here termed a(n)* ions). MS/MS of [M+Na]+ species also yields b(n) ions of substantially lower intensities that lack the N-terminal Boc group (b(n)*). A similar distinction between the fragmentation patterns of proton and sodium ion adducts is observed in the case of peptides possessing an N-terminal acetyl group. An example of the fragmentation of the H+ and Na+ adducts of a naturally occurring peptaibol from a Trichoderma species confirms that fragmentation of these two ionized species yields complementary information, useful in sequencing natural peptides. Inspection of the isotopic pattern of b(n) ions derived from [M+H]+ adducts of peptaibols provided insights into the sequences of microheterogeneous samples. This study reveals that the combined use of protonated and sodium ion adducts should prove useful in de novo sequencing of peptides, particularly of naturally occurring neutral peptides with modified N- and C-termini, for example, peptaibols.  相似文献   

19.
Gel electrophoresis is often used for the primary analysis and purification of proteins, and peptide mapping by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for the rapid identification of unknown proteins. The identification is usually obtained by digesting the protein with an enzyme and matching the masses of the proteolytic peptides with those of each protein in a sequence database. Another important aspect in many proteomic experiments is the determination of the relative protein quantities (e.g. comparison between control and altered states). Usually, this is obtained by comparing the spot intensities of two independent gels. This procedure is time-consuming and not very accurate. Recently, several methodologies using isotope labeling of proteins for quantitative proteomic studies have been introduced (e.g. using ICAT reagents or growing cells in isotopically enriched nutrients). However, none of these methodologies is foolproof and there is still the need for simple and inexpensive alternatives for determining the relative quantities of proteins. Previously, we showed that a mixture of acrylamide and deuterated acrylamide could be used as cysteine alkylating reagent prior to electrophoresis, improving the coverage and the confidence of the protein identification procedure (Sechi S, Chait BT. Anal. Chem. 1998; 70: 5150). Here we show that a similar approach can be used to obtain relative quantitation at the femtomole level of proteins isolated by gel electrophoresis. Deuterated acrylamide is used to alkylate the cysteines in one sample and regular acrylamide is used to alkylate the cysteines in the second sample. The two samples are then mixed together in a 1:1 ratio and the relative protein quantities are determined from the ion intensity ratios of the two cysteine-containing peptides isotopic envelopes (regular/deuterated). The analysis of several proteins mixed in different ratios is reported showing that this approach can reliably be used for protein identification and quantification. Briefly, a simple and inexpensive method for quantifying and simultaneously identifying proteins isolated by gel electrophoresis using MALDI-MS is presented.  相似文献   

20.
The sensitivity of protein identification by peptide sequencing using a nanoelectrospray ion source is limited by our ability to identify peptide ions in the mass spectrum. Their intensity must be higher than the chemical noise level to allow a rapid localization in the spectrum. Multiply-charged peptide ions on or below this level can only be found because their isotopic pattern is denser than that of the mostly singly-charged chemical background ions. However, to find peptides by looking for multiply-charged isotope clusters can be very timeconsuming and may lead to misassignments of the first isotope. Here we present a software-based method to increase the signal to noise ratio of ion signals in an electrospray spectrum. The software has two elements, one to reduce the noise level and a second to increase the intensity of ion peaks. Both methods together generate a spectrum in which the signal to noise ratio of ion signals is considerably improved. Peptide ions previously hidden in the chemical background are dismantled and can now be localized and selected for fragmentation. The method has been used successfully to identify low level proteins separated by one dimensional gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号