首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method has been developed for the determination of 5,10‐methylenetetrahydrofolate (methyleneTHF), tetrahydrofolate (THF) and 5‐methyltetrahydrofolate (methylTHF) in colorectal mucosa and tumor tissues. The folate extraction method includes homogenization, heat and folate conjugase treatment to hydrolyze polyglutamyl folate to monoglutamyl folate. Before analysis on LC‐MS/MS, simple and fast sample purification with ultrafiltration (molecular weight cut‐off membrane, 10 kDa) was performed. Folates were detected and quantified using positive electrospray. The method described in the present paper was successfully applied to determine the level of three folate monoglutamates in mucosa and tumor samples from 77 colorectal cancer patients, starting from a limited amount of tissue. The results showed that the LC‐MS/MS method has a great advantage over other previously used methods because of its high sensitivity and selectivity. Significantly higher levels of methyleneTHF and THF were found in tumor compared with matched mucosa tissues. Folate levels in adjacent mucosa were associated with tumor location, age and gender. The correlation between folate levels and tumor site further strengthens the fact that development of right‐ and left‐sided tumors follows different pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Small specimen volume and high sample throughput are key features needed for routine methods used for population biomonitoring. We modified our routine eight-probe solid phase extraction (SPE) LC-MS/MS method for the measurement of five folate vitamers [5-methyltetrahydrofolate (5-methylTHF), folic acid (FA), plus three minor forms: THF, 5-formylTHF, 5,10-methenylTHF] and one oxidation product of 5-methylTHF (MeFox) to require less serum volume (150 μL instead of 275 μL) by using 96-well SPE plates with 50 mg instead of 100 mg phenyl sorbent and to provide faster throughput by using a 96-probe SPE system. Total imprecision (10 days, two replicates/day) for three serum quality control pools was 2.8–3.6 % for 5-methylTHF (19.5–51.1 nmol/L), 6.6–8.7 % for FA (0.72–11.4 nmol/L), and ≤11.4 % for the minor folate forms (<1–5 nmol/L). The mean (±SE) recoveries of folates spiked into serum (3 days, four levels, two replicates/level) were: 5-methylTHF, 99.4?±?3.6 %; FA, 100?±?1.8 %; minor folates, 91.7–108 %. SPE extraction efficiencies were ≥85 %, except for THF (78 %). Limits of detection were ≤0.3 nmol/L. The new method correlated well with our routine method [n?=?150, r?=?0.99 for 5-methylTHF, FA, and total folate (tFOL, sum of folate forms)] and produced slightly higher tFOL (5.6 %) and 5-methylTHF (7.3 %) concentrations, likely due to the faster 96-probe SPE process (1 vs. 5 h), resulting in improved SPE efficiency and recovery compared to the eight-probe SPE method. With this improved LC-MS/MS method, 96 samples can be processed in ~2 h, and all relevant folate forms can be accurately measured using a small serum volume.
Figure
High-throughput LC-MS/MS method for population monitoring of serum folate forms  相似文献   

3.
(C5Me5)2Sm(THF)2 reacts with 1,2-epoxybutane in toluene to form, in addition to the toluene soluble [(C5 Me5)2Sm]2(μ-O), 1, the hexane soluble [(C5Me5)2Sm(THF)]2(μ-O), 2. In hexane, 2 loses THF to form 1 as a precipitate, but 1 cannot be converted to 2 by addition of THF at room temperature. Compound 1 does convert to 2 in low yield in THF at reflux. The reaction of (C5Me5)2SM(phthalan) with 1,2-epoxybutane generates 1 and a phthalan analog of 2, [(C5Me5)2Sm(phthalan)]2(μ,-O), 3. Compound 2 reacts with Me3CCN to form [(C5Me5)2Sm(NCCMe3)]2(μ-O), 4, by displacement of THF.  相似文献   

4.
The synthesis of thymine for DNA is catalyzed by the enzyme thymidylate synthase (TS). A family of flavin-dependent TSs encoded by the thyX gene has been discovered recently. These newly discovered TSs require a reducing substrate in addition to 2'-deoxyuridine monophosphate (dUMP) and 5,10-methylenetetrahydrofolate (CH2THF), suggesting that the enzyme-bound flavin is a redox intermediary in catalysis. The oxidation of the reduced flavin of the TS from Campylobacter jejuni has been observed directly upon mixing with dUMP and CH2THF under anaerobic conditions, thus providing the first direct demonstration of its redox role in catalysis. Product analysis showed that the one mole of 2'-deoxythymidine monophosphate is formed along with one mole of tetrahydrofolate for each mole of reduced enzyme-bound flavin. The classic TS inactivator 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) was able to bind to the reduced enzyme but was unable to oxidize the flavin, even in the presence of CH2THF. Furthermore, the nucleotide binding site of the enzyme treated with FdUMP and CH2THF was irreversibly blocked, suggesting the formation of a stable substrate adduct analogous to that formed by the well-studied thyA-encoded TS. The formation of inactivated enzyme without flavin oxidation indicates that methylene transfer from the folate to the nucleotide occurs prior to flavin redox chemistry.  相似文献   

5.
The reaction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with LiAlH4 affords two products regardless of the solvent used (tetrahydrofuran or diethyl ether). These products were isolated as green and colorless crystals. Green crystals of the complex [(dpp-bian)Al(H)2Li(THF)3] (1) were obtained from tetrahydrofuran; colorless crystals of the complex [{dpp-bian(H2)}Al(H)2Li(Et2O)2] (2), from diethyl ether. The reactions of compound 1 with 2,6-di-tert-butyl-4-methylphenol and benzophenone gave monohydrides [(dpp-bian)Al(H)(OC6H2-2,6-Bu2 t-4-Me)][Li(THF)4] (3) and [(dpp-bian)Al(H)(OCHPh2)- Li(THF)2] (4), respectively. The diamagnetic aluminum hydride [(dpp-bian)AlH(THF)] (5) was synthesized by the reaction of dichloroalane HAlCl2 (in situ) with the disodium salt of dpp-bian in THF; the paramagnetic hydride [(dpp-bian)AlH(Cl)] (6) containing the dpp-bian radical anion was synthesized by the reaction of the monosodium salt (dpp-bian)Na with monochloroalane H2AlCl (in situ) in diethyl ether. The reaction of compound 6 with tert-butyllithium gives the complex [(dpp-bian)AlBut(Et2O)] (7). Diamagnetic derivatives 1—5 and 7 were characterized by 1Н NMR spectroscopy; paramagnetic compound 6, by ESR spectroscopy. The molecular structures of compounds 1—7 were determined by single-crystal X-ray diffraction.  相似文献   

6.
At elevated temperatures, the aluminum complex [(dpp‐BIAN)AlI(Et2O)] ( 1 ) splits the C‐O bonds of diethyl ether and tetrahydrofurane yielding the dimeric alkoxides [(dpp‐BIAN)AlOEt]2 ( 2 ) and [(dpp‐BIAN)AlO(CH2)4I]2 ( 3 ), respectively. Already at ambient temperatures, a cleavage of the C‐O bond of THF is to observe in the reaction of 1 with CpNa in THF as confirmed by the formation of [(dpp‐BIAN)AlO(CH2)4C5H5]2 ( 4a ) and [(dpp‐BIAN)Al{O(CH2)4C5H5}(THF)] ( 4b ) in a molar ratio of 1:2. The reaction of 1 with t‐BuOK affords the monomeric alkoxide [(dpp‐BIAN)AlO‐t‐Bu(Et2O)] ( 5 ). Compounds 2 , 3 , and 4a/b were characterized by elemental analyses and IR spectra. Additionally, the structures of 2 and 3 were determined by single crystal X‐ray diffraction.  相似文献   

7.
The reduction of digallane [(dpp‐bian)Ga? Ga(dpp‐bian)] ( 1 ) (dpp‐bian=1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene) with lithium and sodium in diethyl ether, or with potassium in THF affords compounds featuring the direct alkali metal–gallium bonds, [(dpp‐bian)Ga? Li(Et2O)3] ( 2 ), [(dpp‐bian)Ga? Na(Et2O)3] ( 3 ), and [(dpp‐bian)Ga? K(thf)5] ( 7 ), respectively. Crystallization of 3 from DME produces compound [(dpp‐bian)Ga? Na(dme)2] ( 4 ). Dissolution of 3 in THF and subsequent crystallization from diethyl ether gives [(dpp‐bian)Ga? Na(thf)3(Et2O)] ( 5 ). Ionic [(dpp‐bian)Ga]?[Na([18]crown‐6)(thf)2]+ ( 6 a ) and [(dpp‐bian)Ga]?[Na(Ph3PO)3(thf)]+ ( 6 b ) were obtained from THF after treatment of 3 with [18]crown‐6 and Ph3PO, respectively. The reduction of 1 with Group 2 metals in THF affords [(dpp‐bian)Ga]2M(thf)n (M=Mg ( 8 ), n=3; M=Ca ( 9 ), Sr ( 10 ), n=4; M=Ba ( 11 ), n=5). The molecular structures of 4 – 7 and 11 have been determined by X‐ray crystallography. The Ga? Na bond lengths in 3 – 5 vary notably depending on the coordination environment of the sodium atom.  相似文献   

8.
The enantiomerically pure bridged aminotroponimines, S,S- and R,R-H2{(iPrATI)2diph}, in which two amino-isopropyl-troponimine moieties are linked by 1,2-diamino-1,2-diphenylethane, were deprotonated with nBuLi to give the corresponding dilithium salts [{Li(THF)}2{(S,S)-(iPrATI)2diph)}] (1a) and [{Li(THF)}2{(R,R)-(iPrATI)2diph)}] (1b). The potassium salts [{K(THF)2}2{(S,S)-(iPrATI)2diph}] (2a) and [{K(THF)2}2{(R,R)-(iPrATI)2diph}] (2b) were obtained by a deprotonation reaction with KH. Transmetallation of 2a and 2b with anhydrous lanthanide trichlorides led to [(S,S)-{(iPrATI)2diph}LnCl(THF)] (Ln = Ho (3a), Er (4a)) and [(R,R)-{(iPrATI)2diph}LnCl(THF)] (Ln = Ho (3b), Er (4b), Yb (5b)), respectively. The corresponding Yb complex [(S,S)-{(iPrATI)2diph}YbCl(THF)] (5a) was obtained by treatment of 1a with YbCl3 at elevated temperature. Performing the same reaction at room temperature results in the metallate complex [(S,S)-{(iPrATI)2diph}YbCl2][Li(THF)4] (6). Reaction of NaC5H5 with afforded [(S,S)-{(iPrATI)2diph}Yb(eta5-C5H5)(THF)] (7). The structures of 1a, 3a, 4a, 5a, 5b, 6, and 7 were confirmed by single crystal X-ray diffraction in the solid-state.  相似文献   

9.
The new Ar-BIAN complexes [(mes-BIAN)InCl(3)(THF)] (1), [(mes-BIAN)(2)Tl][PF(6)] (2), [(dipp-BIAN)SnCl(4)] (3), [(dipp-BIAN)SbCl(3)] (4), [(dipp-BIAN)BiCl(3)] (5) and [(mes-BIAN)BiCl(3)] (6) have been prepared by treatment of the neutral mes- and dipp-substituted BIAN ligands with the p-block reagents InCl(3), TlPF(6), SnCl(4), SbCl(3), and BiCl(3). The molecular structures of complexes 1-6 have been determined by single-crystal X-ray diffraction methods. However, only the atom connectivity was established for 5.  相似文献   

10.
The reactions of ytterbium naphthalene complex C10H8Yb(THF)2 with 2-cyclopentadienylethanol, 1-cyclopentadienylpropan-2-ol, 3-cyclopentadienyl-1-butoxypropan-2-ol, and cyclopentadienyldimethylsilyl-tert-butylamine were studied. The bivalent ytterbium complexes with chelate bifunctional cyclopentadienyl ligands [(η5−C5H5)CH2CH21−O)]Yb(THF), [(η5−C5H5)CH2CH21−O)]Yb(DME). [(η5−C5H5)CH2CH(Me)(η1−O)]Yb(THF), [(η5−C5H5)CH2CH(CH2OC4H9)(η1−O)]Yb(THF), and [(η5−C5H5)SiMe21−N(Bu1))]Yb(THF) were obtained and characterized. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 742–745, April, 2000.  相似文献   

11.
Lanthanide Complexes for Oligomerization of Phenyl Isocyanate   总被引:1,自引:0,他引:1  
IntroductionThestudyonthereactivitiesoflanthanidecomplexesto wardisocyanateshasattractedmuchattention .Ithasbeenre portedthatlanthanidealkoxides,1anddivalentdiaza pentadi enyllanthanidecomplexes2 canbeusedasthesinglecompo nentinitiatorsforisocyanatespolymerization .Recentlyourre searchgrouphasalsofoundthatlanthanoceneamide ,3diva lentaryloxideofsamarium4 ,5anddivalentsamarocene6 areallactivefortheoligomerizationofphenylisocyanate,andtheactivespeciesforthesethreesystemswereallsuccessfullyisolat…  相似文献   

12.
We present here the synthesis, characterization, and flash photolysis study of [(F(8)TPP)Fe(II)(CO)(THF)] (1) [F(8)TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2-)]. Complex 1 crystallizes from THF/heptane solvent system as a tris-THF solvate, [(F(8)TPP)Fe(II)(CO)(THF)].3THF (1.3THF), with ferrous ion in the porphyrin plane (C(61)H(52)F(8)FeN(4)O(5); a = 11.7908(2) A, b = 20.4453(2) A, c = 39.9423(3), alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees; orthorhombic, P2(1)2(1)2(1), Z = 8; Fe-N(4)(av) = 2.00 A; N-Fe-N (all) = 90.0 degrees ). This complex (as 1.THF) has also been characterized by (1)H NMR [six-coordinate, low-spin heme; CD(3)CN, RT, delta 8.82 (s, pyrrole-H, 8H), 7.89 (s, para-phenyl-H, 8H), 7.46 (s, meta-phenyl-H, 4H), 3.58 (s, THF, 8H), 1.73 (s, THF, 8H)], (2)H NMR (pyrrole-deuterated analogue) [(F(8)TPP-d(8))Fe(II)(CO)(THF)] [THF, RT, delta 8.78 ppm (s, pyrrole-D)], (13)C NMR (on (13)CO-enriched adduct) [THF-d(8), RT, delta 206.5 ppm; CD(2)Cl(2), RT, delta 206.1 ppm], UV-vis [THF, RT, lambda(max), 411 (Soret), 525 nm], and IR [293 K, solution, nu(CO) 1979 cm(-)(1) (THF), 1976 cm(-)(1) (acetone), 1982 cm(-)(1) (CH(3)CN)] spectroscopies. In order to more fully understand the intricacies of solvent-ligand binding (as compared to CO rebinding to the photolyzed heme), we have also synthesized the bis-THF adduct [(F(8)TPP)Fe(II)(THF)(2)]. Complex 2 also crystallizes from THF/heptane solvent system as a bis-THF solvate, [(F(8)TPP)Fe(II)(THF)(2)].2THF (2.2THF), with ferrous iron in the porphyrin plane (C(60)H(52)F(8)FeN(4)O(4); a = 21.3216(3) A, b = 12.1191(2) A, c = 21.0125(2) A, alpha = 90 degrees, beta = 105.3658(5) degrees, gamma = 90 degrees; monoclinic, C2/c, Z = 4; Fe-N(4)(av) = 2.07 A; N-Fe-N (all) = 90.0 degrees ). Further characterization of 2 includes UV-vis [THF, lambda(max), 421 (Soret), 542 nm] and (1)H NMR [six-coordinate, high spin heme; THF-d(8), RT, delta 56.7 (s, pyrrole-H, 8H), 8.38 (s, para-phenyl-H, 8H), 7.15 (s, meta-phenyl-H, 4H)] spectroscopies. Flash photolysis studies employing 1 were able to resolve the CO rebinding kinetics in both THF and cyclohexane solvents. In CO saturated THF [[CO] approximately 5 mM] and at [1] congruent with 5 microM, the conversion of [(F(8)TPP)Fe(II)(THF)(2)] (produced after photolytic displacement of CO) to [(F(8)TPP)Fe(II)(CO)(THF)] was monoexponential, with k(obs) = 1.6 (+/-0.2) x 10(4) s(-)(1). Reduction in [CO] by vigorous Ar purging gave k(obs) congruent with 10(3) s(-)(1) in cyclohexane. The study presented in this report lays the foundation for applying fast-time scale studies based on CO flash photolysis to the more complicated heterobimetallic heme/Cu systems.  相似文献   

13.
《中国化学快报》2023,34(8):108055
The combination of cyclopentadiene, β-diketonate and tripyrazoylborate ligands with dysprosium ion afforded five mononuclear compounds: [(Cp)2Dy(Tp*)] (1Dy), [(Cp)Dy(Tp*)Cl(THF)] (2Dy), [(Cp)Dy(Tp)Cl(THF)] (3Dy), [(DBM)Dy(Tp)Cl(THF)] (4Dy), [{(Tp)Dy(DBM)2(H2O)}·THF] (5Dy) (Cp = cyclopentadiene; Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate; Tp = hydrotris(1-pyrazolyl)borate; DBM = dibenzoylmethanoate). Magnetic study revealed that 1Dy and 3Dy exhibited typical butterfly-type hysteresis. AC susceptibility study combined with ab initio calculations indicated that the magnetic relaxation behaviors of 1Dy4Dy were governed by the Orbach and Raman processes under applied DC field. Moreover, 3Dy showed two-step magnetic relaxation, which was attributed to the static disordering of the coordinated THF molecule. Magnetic anisotropy analysis indicated that it was the relative strength of the interactions between DyIII and surrounding ligands that determined the orientation of the magnetic easy axis.  相似文献   

14.
Folates act as essential coenzymes in many biological pathways, including the synthesis and methylation of DNA. Low folate concentration in serum and whole blood (WB) is associated with several disease conditions. We describe a stable-isotope-dilution ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the quantification of (6S)-5-CH(3)-H(4)folate (where H(4)folate is tetrahydrofolate) and non-CH(3)-H(4)folate [sum of HCO-H(4)folate, (6R)-5,10-CH(+)-H(4)folate, (6R)-5,10-CH(2)-H(4)folate, (6S)-H(4)folate, dihydrofolate, and folic acid] in WB. The assay includes a solid-phase extraction procedure after the hemolysis and deconjugation. The method was linear over the concentration range from 0.2 to 200 nmol/L. The limits of detection were 0.40 nmol/L or lower for the folate forms. The interassay coefficients of variation were 7.4% for (6S)-5-CH(3)-H(4)folate and 15.4% for non-CH(3)-H(4)folate. For the folate forms, the recoveries were between 97.1% and 102.7%. Sample preparation caused the generation of artificial folic acid in WB and serum in a dose-dependent manner, which can lead to misinterpretation of the results. The use of antioxidants could not prevent the formation of folic acid. The median fasting WB folate concentrations from 42 nonsupplemented and nonfortified adults were 576 nmol/L (6S)-5-CH(3)-H(4)folate and 73.6 nmol/L non-CH(3)-H(4)folate, and 1,206 nmol/L (6S)-5-CH(3)-H(4)folate and 155 nmol/L non-CH(3)-H(4)folate for 35 adults who had taken 500 μg of folic acid, 50 mg of vitamin B(6), and 500 μg of vitamin B(12) per day orally for 6 months. In conclusion, the UPLC-MS/MS method is fast and has a good sensitivity and selectivity for WB folates. We observed a dose-dependent oxidation of (6S)-H(4)folate, which resulted in the formation of artificial folic acid in serum and WB. To minimize this effect, we recommend a fast sample preparation.  相似文献   

15.
Huang BH  Ko BT  Athar T  Lin CC 《Inorganic chemistry》2006,45(18):7348-7356
The reaction of [(mu3,mu3-EDBP)Li2]2[(mu3-nBu)Li(0.5Et2O)]2 (1) [EDBP-H2 = 2,2'-ethylidenebis(4,6-di-tert-butylphenol)] with 1 equiv of ROH in toluene gave [(mu3,mu3-EDBP)Li2]2[(mu3-OR)Li]2 [R = Bn (2), CH2CH2OEt (3), and nBu (4)]. In the presence of 3 equiv of tetrahydrofuran (THF), the hexanuclear compound 1 slowly decomposed to an unusual pentanuclear Li complex, [(mu2,mu3-EDBP)2Li4(THF)2][(mu3-nBu)Li] (5). Further reaction of 5 with ROH gave [(mu2,mu3-EDBP)2Li4(THF)3][(mu4-OR)Li] [R = Bn (6), nBu (7), and CH2CH2OEt (8)] without a major change in its skeleton. Treatment of 2 with an excess of hexamethylphosphoramide (HMPA) yields [(mu2,mu2-EDBP)Li2(HMPA)2][(mu3-OBn)Li(HMPA)] (9). Compounds [(mu2,mu3-EDBP)2Li4(THF)][(mu4-OCH2CH2OEt)Li]2 (10) and [(mu2,mu2-EDBP)2Li4(mu4-OCH2CH2OEt)(HMPA)]-[Li(HMPA)4]+ (11) can be obtained by the reaction of 3 with an "oxygen-donor solvent" such as THF and HMPA, respectively. Among the compounds described above, 8 has shown great reactivity toward ring-opening polymerization of L-lactide, yielding polymers with very low polydispersity indexes in a wide range of monomer-to-initiator ratios.  相似文献   

16.
The versatile reagent [η5-C5H5)Fe(CO)2(THF)]BF4 has been isolated from the reaction of (η5-C5H5)Fe(CO)2I and AgBF4 in THF and shown to react in CH2Cl2 with olefins to yield [(η5-C5H5)Fe(CO)22-olefin)]BF4 complexes. For most olefins the yields are high. The yield in these reactions can be increased by treating the CH2Cl2 solution of [(η5-C5H5)Fe(Co)2(THF)]BF4 and olefin with gaseous BF3 in order to complex the THF as the BF3-THF adduct. Most striking is the increase in yield for the cyclohexene complex from 17% to 92%.  相似文献   

17.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

18.
The Ni amide and hydroxide complexes [(PCP)Ni(NH2)] ( 2 ; PCP=bis‐2,6‐di‐tert‐butylphosphinomethylbenzene) and [(PCP)Ni(OH)] ( 3 ) were prepared by treatment of [(PCP)NiCl] ( 1 ) with NaNH2 or NaOH, respectively. The conditions for the formation of 3 from 1 and NaOH were harsh (2 weeks in THF at reflux) and a more facile synthetic route involved protonation of 2 with H2O, to generate 3 and ammonia. Similarly the basic amide in 2 was protonated with a variety of other weak acids to form the complexes [(PCP)Ni(2‐Me‐imidazole)] ( 4 ), [(PCP)Ni(dimethylmalonate)] ( 5 ), [(PCP)Ni(oxazole)] ( 6 ), and [(PCP)Ni(CCPh)] ( 7 ), respectively. The hydroxide compound 3 , could also be used as a Ni precursor and treatment of 3 with TMSCN (TMS=trimethylsilyl) or TMSN3 generated [(PCP)Ni(CN)] ( 8 ) or [(PCP)Ni(N3)] ( 9 ), respectively. Compounds 3–7 , and 9 were characterized by X‐ray crystallography. Although 3 , 4 , 6 , 7 , and 9 are all four‐coordinate complexes with a square‐planar geometry around Ni, 5 is a pseudo‐five‐coordinate complex, with the dimethylmalonate ligand coordinated in an X‐type fashion through one oxygen atom, and weakly as an L‐type ligand through another oxygen atom. Complexes 2–9 were all reacted with carbon dioxide. Compounds 2 – 4 underwent facile reaction at low temperature to form the κ1O carboxylate products [(PCP)Ni{OC(O)NH2}] ( 10 ), [(PCP)Ni{OC(O)OH}] ( 11 ), and [(PCP)Ni{OC(O)‐2‐Me‐imidazole}] ( 12 ), respectively. Compounds 10 and 11 were characterized by X‐ray crystallography. No reaction was observed between 5 – 9 and carbon dioxide, even at elevated temperatures. DFT calculations were performed to model the thermodynamics for the insertion of carbon dioxide into 2 – 9 to form a κ1O carboxylate product and understand the pathways for carbon dioxide insertion into 2 , 3 , 6 , and 7 . The computed free energies indicate that carbon dioxide insertion into 2 and 3 is thermodynamically favorable, insertion into 8 and 9 is significantly uphill, insertion into 5 and 7 is slightly uphill, and insertion into 4 and 6 is close to thermoneutral. The pathway for insertion into 2 and 3 has a low barrier and involves nucleophilic attack of the nitrogen or oxygen lone pair on electrophilic carbon dioxide. A related stepwise pathway is calculated for 7 , but in this case the carbon of the alkyne is significantly less nucleophilic and as a result, the barrier for carbon dioxide insertion is high. In contrast, carbon dioxide insertion into 6 involves a single concerted step that has a high barrier.  相似文献   

19.
The National Institute of Standards and Technology (NIST) is developing a wide variety of Standard Reference Materials (SRMs) to support measurements of vitamins and other nutrients in foods. Previously, NIST has provided SRMs with values assigned for the folate vitamer, folic acid (pteroylglutamic acid), which is fortified in several foods due to its role in prevention of neural tube defects. In order to expand the number of food-based SRMs with values assigned for folic acid, as well as additional endogenous folates, NIST has developed methods that include trienzyme digestion and isotope-dilution liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Sample preparation was optimized for each individual food type, but all samples were analyzed under the same LC-MS/MS conditions. The application of these methods resulted in folic acid values for SRM 1849a Infant/Adult Nutritional Formula and SRM 3233 Fortified Breakfast Cereal of (2.33?±?0.06) μg/g and (16.0?±?0.7) μg/g, respectively. In addition, the endogenous folate vitamer 5-methlytetrahydrofolate (5-MTHF) was detected and quantified in SRM 1849a Infant/Adult Nutritional Formula, candidate SRM 1549a Whole Milk Powder, and candidate SRM 1845a Whole Egg Powder, resulting in values of (0.0839?±?0.0071) μg/g, (0.211?±?0.014) μg/g, and (0.838?±?0.044) μg/g, respectively. SRM 1849a Infant/Adult Nutritional Formula is the first food-based NIST SRM to possess a reference value for 5-MTHF and the first certified reference material to have an assigned 5-MTHF value based on LC-MS/MS. The values obtained for folic acid and 5-MTHF by LC-MS/MS will be incorporated into the final value assignments for all these food-based SRMs.  相似文献   

20.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号