首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gradient elution provides significantly higher peak capacity in comparison to the isocratic elution mode, hence it is very useful in online comprehensive two-dimensional liquid chromatography (LC). We compared suitability of five commercial core-shell columns and one monolithic column for fast gradients in the second LC dimension, where the time of separation is strictly limited by the fraction cycle time. In two-dimensional reversed-phase systems with partially correlated retention, the resolution, the peak capacity, and the regularity of coverage of the second-dimension retention space can be improved by appropriate adjusting the gradient time and the gradient range to suit the sample properties. We developed a new strategy for adjusting the gradient mobile phase composition range in the second-dimension, employing the retention data of representative sample standards characterizing the sample properties, which can be calibrated using the reference alkylbenzene series. Optimized second-dimension gradients with single-step or segmented profiles covering two or more fraction ranges, employed for the separation of subsequent fractions from the first-dimension, improve significantly the resolution, the separation time, and the regularity of coverage of the two-dimensional retention plane. The approach was applied to the two-dimensional comprehensive separation of phenolic acids and flavonoid compounds occurring as natural antioxidants.  相似文献   

2.
The overall peak capacity in comprehensive two-dimensional liquid chromatographic (LC x LC) separation can be considerably increased using efficient columns and carefully optimized mobile phases providing large differences in the retention mechanisms and separation selectivity between the first and the second dimension. Gradient-elution operation and fraction-transfer modulation by matching the retention and the elution strength of the mobile phases in the two dimensions are useful means to suppress the band broadening in the second dimension and to increase the number of sample compounds separated in LC x LC. Matching parallel gradients in the first and second dimension eliminate the necessity of second-dimension column re-equilibration after the independent gradient runs for each fraction, increase the use of the available second-dimension separation time and can significantly improve the regularity of the coverage of the available retention space in LC x LC separations, especially with the first- and second-dimension systems showing partial selectivity correlations. Systematic development of an LC x LC method with parallel two-dimensional gradients was applied for separation of phenolic acids and flavone compounds. Several types of bonded C18, amide, phenyl, pentafluorophenyl and poly(ethylene glycol) columns were compared using the linear free energy relationship method to find suitable column combination with low correlation of retention of representative standards. The phase systems were optimized step-by-step to find the mobile phases and gradients providing best separation selectivity for phenolic compounds. The optimization of simultaneous parallel gradients in the first and second dimension resulted in significant improvement in the utilization of the available two-dimensional retention space.  相似文献   

3.
Comprehensive two-dimensional liquid chromatography (LC x LC) is a powerful tool for the separation of complex biological samples. This technique offers the advantage of simplified automation and greater reproducibility in a shorter analysis time than off-line two-dimensional separation systems. In the present study, an LC x LC system is developed enabling simultaneous UV and MS detection, and which can be easily converted to a conventional reversed-phase LC-UV/MS system. In LC x LC, a 60-min reversed-phase LC separation with a linear solvent gradient in the first dimension is coupled to a second-dimension separation on a mixed-mode cation-exchange/reversed-phase column with a modulation time of 60s. The isocratic separation in the second-dimension column is optimized by the use of a multi-step gradient where the organic and the ionic modifier are varied independently. Intraday (n=3) and interday (n=4) variability of the retention times were evaluated with the complete system and found to be 0.5% and 0.7%, respectively. Good linearity was observed in calibration curves for three different compounds varying in polarity.  相似文献   

4.
An almost orthogonal comprehensive two-dimensional liquid chromatography was developed for the separation of phenolic and flavone natural antioxidants by using combinations of a polyethylene glycol silica micro-column in the first dimension and a porous-shell fused-core C18 column in the second dimension, both in the reversed-phase mode. System orthogonality was improved using parallel gradients of acetonitrile in buffered mobile phase. A new approach was proposed to optimize matching segmented gradient profiles in the two dimensions. An algorithm was developed for automatic corrections of the shifts in retention in the second dimension induced by the parallel two-dimensional gradient operation technique. Using the porous-shell C18 column in the second dimension at elevated temperature (60 degrees C) and high pressure (480 bar) with optimized segmented profiles of the parallel gradients in the two dimensions, the overall separation time for comprehensive LC x LC was reduced to 30 min.  相似文献   

5.
Various combinations of PEG-silica, phenyl-silica and C18 columns in a single-column or serial (tandem) arrangement in the first dimension and a monolithic Chromolith column in the second dimension were tested for comprehensive two-dimensional (2D) LCxLC separation of phenolic and flavone natural antioxidants. The combinations of different stationary phase chemistries provided low selectivity correlations between the first-dimension and the second-dimension separation systems. Improvement in system orthogonality, bandwidths suppression, more regular band distribution over the whole 2D retention plane and increased peak capacity in different 2D setups was achieved by using gradients with matching profiles running in parallel in the two dimensions over the whole 2D separation time range. Instead of two sampling loops, two alternating trapping XTerra columns were used for sample fraction transfer from the first-dimension column to the second dimension. Stronger retention on the XTerra columns in comparison to PEG-silica or phenyl-silica columns in the first dimension allowed using focusing of sample fractions in narrow zones on the top of a trapping column and back-flushing into the second dimension in a very low volume of the mobile phase. This fraction transfer modulation provided significant bandwidth suppression in the second dimension. 2D systems with optimized stationary phase selectivity, parallel gradients and fraction transfer modulation using two trapping columns were applied for the analysis of natural antioxidants in beer and wine samples.  相似文献   

6.
In the present work, an orthogonal two-dimensional (2D) capillary liquid chromatography (LC) method for fractionation and separation of proteins using wide range pH gradient ion exchange chromatography (IEC) in the first dimension and reversed phase (RP) in the second dimension, is demonstrated. In the first dimension a strong anion exchange (SAX) column subjected to a wide range (10.5-3.5) descending pH gradient was employed, while in the second dimension, a large pore (4,000 A) polystyrene-divinylbenzene (PS-DVB) RP analytical column was used for separation of the protein pH-fractions from the first dimension. The separation power of the off-line 2D method was demonstrated by fractionation and separation of human plasma proteins. Seventeen pH-fractions were manually collected and immediately separated in the second dimension using a column switching capillary RP-LC system. Totally, more than 200 protein peaks were observed in the RP chromatograms of the pH-fractions. On-line 2D analysis was performed for fractionation and separation of ten standard proteins. Two pH-fractions (basic and acidic) from the first dimension were trapped on PS-DVB RP trap columns prior to back-flushed elution onto the analytical RP column for fast separation of the proteins with UV/MS detection.  相似文献   

7.
Gradient elution is widely applied in analytical chromatography to reduce the separation time and/or to improve the selectivity. Increasingly the potential of modulating the solvent strength during gradient operation is exploited in preparative liquid chromatography. The purpose of this paper is to investigate theoretically the effect of optimizing free parameters available in gradient chromatography (extents and shapes of gradients) on the productivity of isolating a target component in a multicomponent mixture. An equilibrium stage model was used to quantify and compare different modes of operation (isocratic and various variants of gradient elution). By combining experimental design and artificial neural network concepts, optimal conditions were identified for the production of the second eluting component in a ternary mixture. The strong impact of the shape of gradients on process performance is elucidated.  相似文献   

8.
A new approach to high speed, comprehensive online dual gradient elution 2DLC (LCxLC) based on the use of ultra-fast, high temperature gradient elution reversed phase chromatography is described. Entirely conventional gradient elution instrumentation and columns are assembled in a system which develops a total peak capacity of about 900 in 25 min; this is equivalent to roughly one peak/2 s. Each second dimension gradient is done in a cycle time of 21 s and the peak retention times measured for a set of twenty six indole-3-acetic acid (IAA) derivatives are reproducible to 0.2 s. Each peak eluting from the first dimension column is sampled at least twice across its width, as the corresponding peaks on the second dimension column appear in two or three consecutive second dimension chromatograms, clearly indicating that there is little loss in the resolution gained in the first dimension separation. Application to the separation of the low molecular weight components of wild-type and mutant maize seedlings indicates the presence of about 100 peaks on a timescale of 25 min. Compelling illustrations of the analytical potential of fast, high temperature 2DLC are evident in the clear presence of nine distinct peaks in a single second dimension chromatogram from a single quite narrow first dimension peak, and the great power of 2DLC to solve the "analytic dynamic range" problem inherent in the measurement of small peaks that are neighbors to a gigantic peak.  相似文献   

9.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

10.
P Cesla  J Fischer  P Jandera 《Electrophoresis》2012,33(15):2464-2473
A 2D method was developed for separation of phenolic acids and flavonoids natural antioxidants combining LC with MEKC. The in-capillary preconcentration step was applied for the improvement of the sensitivity of 2D method before the second dimension MEKC analysis. The influence of first dimension LC mobile phase composition on migration times in the second MEKC dimension was evaluated. When gradient elution is applied in the first dimension of 2D LC-MEKC system, increasing concentration of organic solvent in the mobile phase and in fractions transferred from LC influences the electroosmotic flow, partitioning equilibria of samples in micelles and properties of the micelles, which results in shifts of migration times during the consecutive runs in the second MEKC separation dimension. The shifts of migration times caused by the influence of increasing concentration of ACN on MEKC separation in second dimension of 2D LC-MEKC system were compensated by aligning the time axis using electroosmotic flow and micellar marker migration times. The optimized LC-MEKC method was applied on the separation of natural antioxidants in the plant extracts samples.  相似文献   

11.
Gradient-elution LC × LC is a valuable technique for the characterization of complex biological samples as well as for synthetic polymers. Breakthrough and viscous fingering may yield misleading information on the sample characteristics or deteriorate separation. In LC × SEC another phenomenon may jeopardize the separation. If the analytes adsorb on the SEC column under the injection-plug conditions, peak splitting may occur. In LC × LC the effluent from the first column is the sample solvent for the analytes injected into the second dimension. If a gradient-elution LC × SEC setup is used (i.e. if reversed-phase gradient-elution LC is coupled to organic SEC and if normal-phase gradient-elution LC is coupled to SEC with a polar solvent), the percentage of weak solvent may be significant, especially at short analysis times. In this case adsorption in the first-dimension-effluent zone on the second-dimension SEC column can become an issue and two peaks--the first eluting in size-exclusion mode and the second undergoing adsorption--can be obtained. The work presented in this paper documents peak splitting in LC × SEC of polymers. The adsorption of the polymer on the size-exclusion column was proven in one-dimensional isocratic runs. The observed effects were modeled and visualized through simulation. Studies on the influence of the transfer volume were carried out. Keeping the transfer volume as small as possible helped to minimize peak splitting due to adsorption.  相似文献   

12.
A linear gradient elution method using countercurrent chromatography was developed for the separation of four triterpenoid saponins from the roots of Pulsatilla koreana Nakai, including hederacolchiside E, which is responsible for the neuroprotective activity of this plant. The target fraction was obtained by 80% methanol elution of solid phase column chromatography. The partition coefficients of the target compounds were very different, which means they are difficult to separate with a single biphasic solvent system. Several important parameters for gradient elution, such as addition of alcohol content to the solvent system, starting point of the second mobile phase, and the time for the gradient change were logically determined and optimized. Four triterpenoid saponins could ultimately be separated, analyzed by high‐performance liquid chromatography, and their structures were identified by comparing the mass spectra and NMR spectra with the literature data. The compounds and yields were: hederasaponin B ( 1 ; 21.3 mg/100 mg), hederacolchiside E ( 2 ; 19.8 mg/100 mg), cernuoside A ( 3 ; 18.4 mg/100 mg), and cernuoside B ( 4 ; 17.3 mg/100 mg). Gradient‐elution countercurrent chromatography allows the effective separation of compounds with a wide polarity range.  相似文献   

13.
Comprehensive two-dimensional liquid chromatography (LC?×?LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC?×?LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC?×?LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7 %. The effective peak distribution area increased significantly, which produced better separation.  相似文献   

14.
15.
Column peak capacity was utilized as a measure of column efficiency for gradient elution conditions. Peak capacity was evaluated experimentally for reversed-phase (RP) and cation-exchange high-performance liquid chromatography (HPLC) columns, and compared to the values predicted from RP-HPLC gradient theory. The model was found to be useful for the prediction of peak capacity and productivity in single- and two-dimensional (2D) chromatography. Both theoretical prediction and experimental data suggest that the number of peaks separated in HPLC reaches an upper limit, despite using highly efficient columns or very shallow gradients. The practical peak capacity value is about several hundred for state-of-the-art RP-HPLC columns. Doubling the column length (efficiency) improves the peak capacity by only 40%, and proportionally increases both the separation time and the backpressure. Similarly, extremely shallow gradients have a positive effect on the peak capacity, but analysis becomes unacceptably long. The model predicts that a 2D-HPLC peak capacity of 15,000 can be achieved in 8 h using multiple fraction collection in the first dimension followed by fast RP-HPLC gradients employing short, but efficient columns in the second dimension.  相似文献   

16.
In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC×LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC×LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP×RP.  相似文献   

17.
Natural phenolic antioxidants were separated using comprehensive 2D HPLC on a Purospher Star RP-18e column in the first dimension and on two parallel Zirconia Carbon columns working in alternating cycles in the second dimension. The combination of the two columns provides great differences in separation selectivity in each dimension and an almost orthogonal 2D system. Temperature and solvent gradients were compared for the separation of the first-dimension fraction in the stop-flow heart-cutting 2D setup. Temperature gradients provide shorter separation times in comparison with solvent gradients. However, the time required for post-run column equilibration is too long for comprehensive LC × LC. High-temperature isocratic separation was employed in the second dimension of the comprehensive setup, allowing improvement of the fraction transfer frequency between the two dimensions and shorter 2D separation time in comparison to the earlier published method. The approach was applied to the analysis of beer and wine.  相似文献   

18.
A comprehensive 2-D LC x LC system was developed for the separation of phenolic and flavone antioxidants, using a PEG-silica column in the first dimension and a C(18) column with porous-shell particles or a monolithic column in the second dimension. Combination of PEG and C18 or C8 stationary phase chemistries provide low selectivity correlations between the first dimension and the second dimension separation systems. This was evidenced by large differences in structural contributions to the retention by -COOH, -OH and other substituents on the basic phenol or flavone structure. Superficially porous columns with fused core particles or monolithic columns improve the resolution and speed of second dimension separation in comparison to a fully porous particle C(18) column. Increased peak capacity and high orthogonality in different 2-D setups was achieved by using gradients with matching profiles running in parallel in the two dimensions over the whole 2-D separation time range. Multi-dimensional set-up combining the LC x LC separation on-line with UV and multi-channel coulometric detection and off-line with MS/MS technique allowed positive peak identification. The Coularray software compensates for the effects of the baseline drift during the gradient elution and is compatible with parallel gradient comprehensive LC x LC technique. Furthermore, it provides significant improvement in the sensitivity and selectivity of detection in comparison to both UV and MS detection. The utility of these systems has been demonstrated in the analysis of beer samples.  相似文献   

19.
Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments.  相似文献   

20.
Summary Using a camomile flavonoid extract as the sample and four different reversed-phase partition systems, the ability of the Simplex procedure to produce optimum gradient separation of unknown multicomponent mixtures was checked against the linear solvent strength (LSS) gradient elution theory. On the same partition systems the mean solvent strenghts were measured by experimentally determined logk vs. mobile phase composition plots. These mean solvent strengths are compared to those inferred from the optimum gradients and the usefulness of LSS theory in multicomponent mixture gradient elution optimization is discussed.Dadicated to Prof. Dr. A Liberti on the occasion of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号