首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissipative accounts of structure formation show that the self-organisation of complex structures is thermodynamically favoured, whenever these structures dissipate free energy that could not be accessed otherwise. These structures therefore open transition channels for the state of the universe to move from a frustrated, metastable state to another metastable state of higher entropy. However, these accounts apply as well to relatively simple, dissipative systems, such as convection cells, hurricanes, candle flames, lightning strikes, or mechanical cracks, as they do to complex biological systems. Conversely, interesting computational properties—that characterize complex biological systems, such as efficient, predictive representations of environmental dynamics—can be linked to the thermodynamic efficiency of underlying physical processes. However, the potential mechanisms that underwrite the selection of dissipative structures with thermodynamically efficient subprocesses is not completely understood. We address these mechanisms by explaining how bifurcation-based, work-harvesting processes—required to sustain complex dissipative structures—might be driven towards thermodynamic efficiency. We first demonstrate a simple mechanism that leads to self-selection of efficient dissipative structures in a stochastic chemical reaction network, when the dissipated driving chemical potential difference is decreased. We then discuss how such a drive can emerge naturally in a hierarchy of self-similar dissipative structures, each feeding on the dissipative structures of a previous level, when moving away from the initial, driving disequilibrium.  相似文献   

2.
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.  相似文献   

3.
The dynamics of the reduced density matrix of the driven dissipative two-state system is studied for a general diagonal/off-diagonal initial state. We derive exact formal series expressions for the populations and coherences and show that they can be cast into the form of coupled nonconvolutive exact master equations and integral relations. We show that neither the asymptotic distributions, nor the transition temperature between coherent and incoherent motion, nor the dephasing rate and relaxation rate towards the equilibrium state depend on the particular initial state chosen. However, in the underdamped regime, effects of the particular initial preparation, e.g. in an off-diagonal state of the density matrix, strongly affect the transient dynamics. We find that an appropriately tuned external ac-field can slow down decoherence and thus allow preparation effects to persist for longer times than in the absence of driving. Received 23 October 1998 and Received in final form 26 February 1999  相似文献   

4.
We study the time evolution of the classical and quantum correlations for interacting and noninteracting two-qubit systems under the influence of noncorrelated and correlated environmental models. We discuss the dependence of different physical quantifiers on the environment parameters. Interestingly, we examine the effects of the initial state and different system parameters on the evolution of correlations of the system of qubits in contact with different kinds of environments. We show how the interaction among qubits can protect and preserve the correlation loss during the time evolution for various environmental models. Moreover, we examine the competition between the dissipative and coherent effects in different kinds of correlations dynamics of the system of qubits. Our study gives a deeper understanding on the correlations for a wide variety of the environment models, which is rather significant in different tasks of quantum optics and information.  相似文献   

5.
Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entangled steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance.  相似文献   

6.
We present the generation and interaction dynamics of dispersion managed soliton in a dissipative cubic-quintic nonlinear optical fiber coupled with frequency-selective feedback. Analytically, perturbative variational method is used to obtain evolution equations for different soliton parameters that are subsequently solved to study the propagation characteristics of the dispersion managed dissipative solitons (DMDS). The DMDSs show breather like characteristics and are found to be robust against certain level of initial noise. Both the standard Gaussian and more generic super-Gaussian pulse profile are shown to yield stable DMDS. Interaction of two DMDSs of same phase may lead to a bound state. By varying the temporal separation and phase difference between the DMDSs the bound state can be switched between low to high speed regime.  相似文献   

7.
The effects of dissipative dynamics on the magnitude of entanglement generated In atom-photon interactions inside cavities is studied. We present some concrete examples of environment Induced entanglement in alom-photon interactions. We consider various dissipative atom-cavity systems and show that their collective dynamics can be used to maximize entanglement for intermediate values of the cavity leakage parameter κ. We first consider the interaction of a single two-level atom with one of two coupled microwave cavities and show analytically that the atom-cavity entanglement increases with cavity leakage. We next consider a system of two atoms passing successively through a cavity and derive the expression for the maximum value of in terms of the Rabi angle gt, for which the two-atom entanglement can be Increased. Finally, numerical investigation of micromaser dynamics also reveals the increase of two-atom entanglement with stronger cavity-environment coupling for experimentally attainable values of the micromaser parameters.  相似文献   

8.
We show how giant vortices can be stabilized for strong external potentials in Bose-Einstein condensates. We illustrate the formation of these vortices thanks to the Ginzburg-Landau dissipative dynamics for two typical potentials in two spatial dimensions. The giant vortex stability is studied for the particular case of a rotating cylindrical hard wall. Due to axial symmetry the minimization of the perturbed energy is simplified into a one dimensional relaxation dynamics. Solving this 1D minimization problem, we observe that giant vortices are either never stable, or only stable in a finite frequency range. Finally we obtain the marginal curve for the minimum frequency needed to observe a giant vortex.  相似文献   

9.
We investigate the reduced dynamics of a central spin coupled to a spin environment with non-uniform coupling. Through using the method of time-dependent density-matrix renormalization group (t-DMRG), we nonperturbatively show the dissipative dynamics of the central spin beyond the case of uniform coupling between the central spin and the environment spins. It is shown that only when the system-environment coupling is weak enough, the central spin system shows Markovian effect and will finally reach the steady state; otherwise, the reduced dynamics is non-Markovian and exhibits a quasi-periodic oscillation. The frequency spectrum and the correlation between the central spin system and the environment are also studied to elucidate the dissipative dynamics of the central spin system for different coupling strengths.  相似文献   

10.
We propose that the dissipative dynamics of topological defects in a spiral state is responsible for the transport properties in the spin-glass phase of cuprates. Using the collective-coordinate method, we show that topological defects are coupled to a bath of magnetic excitations. By integrating out the bath degrees of freedom, we find that the dynamical properties of the topological defects are dissipative. The calculated damping matrix is related to the in-plane resistivity, which exhibits an anisotropy and linear temperature dependence in agreement with experimental data.  相似文献   

11.
We analyze the dynamics of a condensate of ultracold atomic fermions following an abrupt change of the pairing strength. At long times, the system goes to a nonstationary steady state, which we determine exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state of the system combines properties of normal and superfluid states -- the gap and the condensate fraction vanish, while the superfluid density is nonzero.  相似文献   

12.
The quantum entanglement between superconducting qubit and cavity field is described quantitatively in the presence of spontaneous decay. Depending on how how a system is quantum correlated with its environment, the entanglement dynamics between the qubit and cavity is evaluated and investigated during the dissipative process. The motivation based on recent experiments wherein the Cooper box can be used to probe the decay of the resonator superposition state due to environmental decoherence, we theoretically investigate the dynamics of entanglement measured by the negativity. Wehrl entropy and Wehrl phase distribution of a superconducting qubit coupled to a cavity field induced by a superconducting qubit-damping reservoir governed by a master equation.  相似文献   

13.
The properties of some complex many body systems can be modeled by introducing in the dissipative dynamics of each single component a set of kinetic constraints that depend on the state of the neighbor systems. Here, we characterize this kind of dynamics for two quantum systems whose independent dissipative evolutions are defined by a Lindblad equation. The constraints are introduced through a set of projectors that restrict the action of each single dissipative Lindblad channel to the state of the other system. Conditions that guarantee a classical interpretation of the kinetic constraints are found. The generation and evolution of entanglement is studied for two optical qubits systems. Classically constrained dissipation leads to a stationary state whose degree of entanglement depends on the initial state. Nevertheless, independently of the initial conditions, a maximal entangled state is generated when both systems are subjected to the action of local Hamiltonian fields that do not commutate with the constraints. The underlying physical mechanism is analyzed in detail.  相似文献   

14.
We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.  相似文献   

15.
In this work, a coupled system of two V-type atoms with dipole–dipole interaction in a dissipative single-mode cavity, which couples with an external environment, is studied. The analytical solution of this model is obtained by solving the time dependent Schrodinger equation after Hamiltonian of dissipative cavity is diagonalized by introducing a set of new creation and annihilation operators according to Fano theorem. It is also discussed in detail how the entanglement dynamics of different initial states are influenced by the cavity-environment coupling, the spontaneously generated interference (SGI) parameter, and the dipole–dipole interaction between two atoms . The results show that the SGI parameter has different effects on entanglement dynamics under different initial states. Namely, the SGI parameter will increase the decay rate of the initially maximal entangled state and reduce that of the initially partial entangled state. For the initially product state, the larger SGI parameter corresponds to the more entanglement generated. The entanglement monotonically decreases under the weak cavity-environment coupling, while the oscillation of entanglement will occur under the strong cavity-environment coupling. The larger the dipole–dipole interaction is, the slower the entanglement decays and the more the entanglement will be generated. So the dipole–dipole interaction can not only protect and generate entanglement very effectively, but also enhance the regulation effect of the SGI parameter on entanglement.  相似文献   

16.
We study the dynamics of entanglement in a two-qubit system interacting with a squeezed thermal bath via a dissipative system-reservoir interaction with the system and reservoir assumed to be in a separable initial state. The resulting entanglement is studied by making use of concurrence as well as a recently introduced measure of mixed state entanglement via a probability density function which gives a statistical and geometrical characterization of entanglement by exploring the entanglement content in the various subspaces spanning the two-qubit Hilbert space. We also make an application of the two-qubit dissipative dynamics to a simplified model of quantum repeaters.  相似文献   

17.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

18.
We study the entanglement dynamics between two strongly-AC-driven superconducting charge qubits coupled collectively to a zero temperature, dissipative resonator and find an unusual feather that the competing of creation and annihilation of entanglement can lead to entanglement increasing, sudden death and revival. We also calculate the dependence of the death time on the initial state of the system.  相似文献   

19.
A quantum-chemical calculation of the excited electronic states of a Rh. Sphaeroides reaction centre was performed. We discovered a new excited electronic state which can participate in electron transfer (ET). The energy gradient calculations showed that photoexcitation activates only high-frequency vibrational modes. This contradicts the widely accepted picture of ET resulting from vibrational wave packet motion. An alternative model is suggested where ET has a purely dissipative character and occurs only due to pigment--protein interaction. With this model, we demonstrate that oscillations in the femtosecond spectra can be caused by the new electronic state and non-Markovian character of dissipative dynamics.  相似文献   

20.
The dynamics of entanglement and quantum discord(QD) between two two-level atoms interacting with two dissipative coupled cavities in the presence of initial atom-cavity correlations is investigated. In comparison with the result of the initial factorized state, we show that the initial state contained quantum correlation of atom-cavity is most robust against the dissipative environment, and the initial atom-cavity correlations, especially the quantum correlation, play a constructive role in the generation of atomic entanglement and QD.Simultaneously, the comparison between Markovian and non-Markovian dynamics, and the influences of inter-cavity hopping rate are also taken into account and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号