首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

2.
We investigate the effects of a movable mirror (cantilever) of an optical cavity on the superradiant light scattering from a Bose-Einstein condensate (BEC) in an optical lattice. We show that the mirror motion has a dynamic dispersive effect on the cavity-pump detuning. Varying the intensity of the pump beam, one can switch between the pure superradiant regime and the Bragg scattering regime. The mechanical frequency of the mirror strongly influences the time interval between two Bragg peaks. We find that when the system is in the resolved side band regime for mirror cooling, the superradiant scattering is enhanced due to coherent energy transfer from the mechanical mirror mode to the cavity field mode.  相似文献   

3.
陈华俊  米贤武 《中国物理 B》2011,20(12):124203-124203
Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.  相似文献   

4.
We show theoretically that it is possible to trap and cool the rotational motion of a macroscopic mirror made of a perfectly reflecting spiral phase element using orbital angular momentum transfer from a Laguerre-Gaussian optical field. This technique offers a promising route to the placement of the rotor in its quantum mechanical ground state in the presence of thermal noise. It also opens up the possibility of simultaneously cooling a vibrational mode of the same mirror. Lastly, the proposed design may serve as a sensitive torsional balance in the quantum regime.  相似文献   

5.
The theoretical work of Braginsky predicted that radiation pressure can couple the mechanical, mirror eigenmodes of a Fabry-Pérot resonator to its optical modes, leading to a parametric oscillation instability. This regime is characterized by regenerative mechanical oscillation of the mechanical mirror eigenmodes. We have recently observed the excitation of mechanical modes in an ultrahigh Q optical microcavity. Here, we present a detailed experimental analysis of this effect and demonstrate that radiation pressure is the excitation mechanism of the observed mechanical oscillations.  相似文献   

6.
By tightly focusing a laser field onto a single cold ion trapped in front of a far-distant dielectric mirror, we could observe a quantum electrodynamic effect whereby the ion behaves as the optical mirror of a Fabry-Pérot cavity. We show that the amplitude of the laser field is significantly altered due to a modification of the electromagnetic mode structure around the atom in a novel regime in which the laser intensity is already changed by the atom alone. We propose a direct application of this system as a quantum memory for single photons.  相似文献   

7.
Trapping and cooling a mirror to its quantum mechanical ground state   总被引:1,自引:0,他引:1  
We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore, it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that the quantum mechanical dynamics of the mirror become easier to observe. These improvements are expected to bring the task of achieving and detecting ground state occupation for the mirror closer to completion.  相似文献   

8.
We study the quantum effects of radiation pressure in a high-finesse cavity with a mirror coated on a mechanical resonator. We show that the optomechanical coupling can be described by an effective susceptibility which takes into account every acoustic modes of the resonator and their coupling to the light. At low frequency this effective response is similar to a harmonic response with an effective mass smaller than the total mass of the mirror. For a plano-convex resonator the effective mass is related to the light spot size and becomes very small for small optical waists, thus enhancing the quantum effects of optomechanical coupling.  相似文献   

9.
We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optomechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.  相似文献   

10.
H.J. Chen  X.W. Mi 《Optik》2012,123(21):1965-1970
The radiation-pressure induces the movable mirror and the steady-state amplitude of the cavity field displaying an optical multistable behavior is investigated in detail by numerical evaluation in Fabry–Perot optical cavity. We introduce an approximation scheme to derive and analyze the final effective mean phonon number using linearized quantum Langevin equation to describe optomechanical cooling. Our results show that the movable mirror can be cooled close to its ground state with low initial temperature and high mechanical quality factor.  相似文献   

11.
We propose an experiment to create and verify entanglement between remote mechanical objects by use of an optomechanical interferometer. Two optical cavities, each coupled to a separate mechanical oscillator, are coherently driven such that the oscillators are laser cooled to the quantum regime. The entanglement is induced by optical measurement and comes about by combining the output from the two cavities to erase which-path information. It can be verified through measurements of degrees of second-order coherence of the optical output field. The experiment is feasible in the regime of weak optomechanical coupling. Realistic parameters for the membrane-in-the-middle geometry suggest entangled state lifetimes on the order of milliseconds.  相似文献   

12.
We investigate quantum-squeezing-enhanced weak-force sensing via a nonlinear optomechanical resonator containing a movable mechanical mirror and an optical parametric amplifier(OPA). Herein, we determined that tuning the OPA parameters can considerably suppress quantum noise and substantially enhance force sensitivity, enabling the device to extensively surpass the standard quantum limit. This indicates that under realistic experimental conditions, we can achieve ultrahigh-precision quantum force sensing by harnessing nonlinear optomechanical devices.  相似文献   

13.
An excited-state atom whose emitted light is backreflected by a distant mirror can experience trapping forces, because the presence of the mirror modifies both the electromagnetic vacuum field and the atom's own radiation reaction field. We demonstrate this mechanical action using a single trapped barium ion. We observe the trapping conditions to be notably altered when the distant mirror is translated across an optical wavelength. The well-localized barium ion enables the spatial dependence of the forces to be measured explicitly. The experiment has implications for quantum information processing and may be regarded as the most elementary optical tweezers.  相似文献   

14.
陈华俊  米贤武 《物理学报》2011,60(12):124206-124206
研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响. 关键词: 腔光机械 辐射压力 简正模式分裂 冷却  相似文献   

15.
陈华俊  米贤武 《光子学报》2011,(10):1474-1483
研究了Fabry-Perot光学腔中包含一个光学参量放大器来增强腔场与机械振子之间的耦合的光机械动力学行为.在解析边带机制下用量子郎之万方程具体研究了振子的涨落光谱、光学多稳态行为、机械阻尼与修正共振频移和基态冷却,通过数值解讨论了辐射压力诱导机械振子和腔场的稳态振幅所展现的光学多稳态行为,同时也分析了辐射压力引起的修...  相似文献   

16.
Towards quantum superpositions of a mirror   总被引:1,自引:0,他引:1  
We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.  相似文献   

17.
陈华俊  米贤武 《光子学报》2014,40(10):1474-1483
研究了Fabry-Perot光学腔中包含一个光学参量放大器来增强腔场与机械振子之间的耦合的光机械动力学行为.在解析边带机制下用量子郞之万方程具体研究了振子的涨落光谱、光学多稳态行为、机械阻尼与修正共振频移和基态冷却.通过数值解讨论了辐射压力诱导机械振子和腔场的稳态振幅所展现的光学多稳态行为,同时也分析了辐射压力引起的修正共振频移和机械阻尼与参量增益、输入激光功率和参量相位这三个因素的关系.此外,随着调节泵浦场的参量相位,振子的涨落光谱呈现简正模式分裂.通过精确求解最终有效声子数论证了基态冷却.结果表明,机械振子的冷却由初始浴温度、机械品质因数和参量相位这个三个因素控制.参量相提供一个新的方法来操控非线性光机械动力学.  相似文献   

18.
We report on the demonstration of a high finesse micro-optomechanical system and identify potential applications ranging from optical cooling to weak force detection to massive quantum superpositions. The system consists of a high quality diameter flat dielectric mirror cut from a larger substrate with a focused ion beam and attached to an atomic force microscope cantilever. Cavity ring-down measurements performed on a 25 mm long Fabry-Pérot cavity with the 30 microm mirror at one end show an optical finesse of 2100. Numerical calculations show that the finesse is not diffraction limited and that orders of magnitude higher finesse should be possible. A mechanical quality factor of more than 10(5) at pressures below 10(-3) mbar is demonstrated for the cantilever with a mirror attached.  相似文献   

19.
Quantum transducers can transfer quantum information between different systems. Microwave–optical photon conversion is important for future quantum networks to interconnect remote superconducting quantum computers with optical fibers. Here, a high-speed quantum transducer based on a single-photon emitter in an atomically thin membrane resonator, that can couple single microwave photons to single optical photons, is proposed. The 2D resonator is a freestanding van der Waals heterostructure (which may consist of hexagonal boron nitride, graphene, or other 2D materials) that hosts a quantum emitter. The mechanical vibration (phonon) of the 2D resonator interacts with optical photons by shifting the optical transition frequency of the single-photon emitter with strain or the Stark effect. The mechanical vibration couples to microwave photons by shifting the resonant frequency of an LC circuit that includes the membrane. Thanks to the small mass of the 2D resonator, both the single-photon optomechanical coupling strength and the electromechanical coupling strength can reach the strong coupling regime. This provides a way for high-speed quantum state transfer between a microwave photon, a phonon, and an optical photon.  相似文献   

20.
The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号