首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigate the possibility of forming Li+Yb ultracold molecules by magnetoassociation in mixtures of ultracold atoms. We find that magnetically tunable Feshbach resonances exist, but are extremely narrow for even-mass ytterbium isotopes, which all have zero spin. For odd-mass Yb isotopes, however, there is a new mechanism due to hyperfine coupling between the electron spin and the Yb nuclear magnetic moment. This mechanism produces Feshbach resonances for fermionic Yb isotopes that can be more than 2 orders of magnitude larger than for the bosonic counterparts.  相似文献   

3.
We compute the fraction of closed-channel molecules in trapped atomic Fermi gases, over the entire range of accessible fields and temperatures. We use a two-channel model of Bardeen-Cooper-Schrieffer-Bose-Einstein-condensation crossover theory at general temperature , and show that this fraction provides a measure of the T-dependent pairing gap. Our calculations, containing no free parameters, are in good quantitative agreement with recent low- measurements in (6)Li. We present readily testable predictions for the dependencies of the closed-channel fraction on temperature and Fermi momentum.  相似文献   

4.
We study bosonic atoms near a Feshbach resonance and predict that, in addition to standard normal and atomic superfluid phases, this system generically exhibits a distinct phase of matter: a molecular superfluid, where molecules are superfluid while atoms are not. We explore zero- and finite-temperature properties of the molecular superfluid (a bosonic, strong-coupling analog of a BCS superconductor), and study quantum and classical phase transitions between the normal, molecular superfluid, and atomic superfluid states.  相似文献   

5.
We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing instabilities towards Stoner ferromagnetism and pairing.  相似文献   

6.
We report a dramatic magnetic-field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance between fermionic atoms. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state.  相似文献   

7.
Scattering length, which can be measured in Bose-Einstein condensate and Feshbach molecule experiments, is extremely sensitive to the variation of fundamental constants, in particular, the electron-to-proton mass ratio (m(e)/m(p) or m(e)/Lambda(QCD), where Lambda(QCD), is the QCD scale). Based on single- and two-channel scattering models, we show how the variation of the mass ratio propagates to the scattering length. Our results suggest that variation of m(e)/m(p) on the level of 10(-11) - 10(-14) on the level of can be detected near a narrow magnetic or an optical Feshbach resonance by monitoring the scattering length on the 1% level. Derived formulas may also be used to estimate the isotopic shift of the scattering length.  相似文献   

8.
We develop a diagrammatic approach for solving few-body problems in heteronuclear fermionic mixtures near a narrow interspecies Feshbach resonance. We calculate s-, p-, and d-wave phaseshifts for the scattering of an atom by a weakly-bound dimer. The fermionic statistics of atoms and the composite nature of the dimer lead to a strong angular momentum dependence of the atom-dimer interaction, which manifests itself in a peculiar interference of the scattered s- and p-waves. This effect strengthens with the mass ratio and is remarkably pronounced in 40K-(40K-6Li) atom-dimer collisions. We calculate the scattering length for two dimers formed near a narrow interspecies resonance. Finally, we discuss the collisional relaxation of the dimers to deeply bound states and evaluate the corresponding rate constant as a function of the detuning and collision energy.  相似文献   

9.
We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical formula of scattering length is obtained by solving the Heisenberg equation. The scattering length can be modified by changing the Rabi frequencies or optical field frequency. By choosing the suitable optical parameters, the two-body loss coefficient K2 can be greatly reduced compared to the usual single optical scheme.  相似文献   

10.
S-, P- and D-wave Feshbach resonances in positron-sodium scattering have been investigated by using the momentum space coupled-channels optical method. The target continuum and positronium (Ps) formation channels are included via an optical potential. Feshbach resonances below the target excitation and Ps (n = 2) formation thresholds are predicted and the effects of channel-coupling scheme, target continuum and Ps formation channels on the resonance energy and resonance width are discussed. We have also found the Wigner cusp structures at the inelastic channel-opening thresholds in positron-sodium scattering cross sections.  相似文献   

11.
In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O2, OH, and PbO. Especially for polar species, the density of s-wave resonant states is quite high, implying potentially disastrous consequences for trapped molecules.  相似文献   

12.
程冬  李亚  凤尔银  黄武英 《中国物理 B》2017,26(1):13402-013402
We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule,taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.  相似文献   

13.
We compare strategies for evaporative and sympathetic cooling of two-species Fermi-Bose mixtures in single-color and two-color optical dipole traps. We show that in the latter case a large heat capacity of the bosonic species can be maintained during the entire cooling process. This could allow one to efficiently achieve a deep Fermi degeneracy regime having at the same time a significant thermal fraction for the Bose gas, crucial for a precise thermometry of the mixture. Two possible signatures of a superfluid phase transition for the Fermi species are discussed.  相似文献   

14.
We model combined photoassociation and Feshbach resonances in a Bose-Einstein condensate. When the magnetic field is far-off resonance, cross coupling between the two target molecules--enabled by the shared dissociation continuum--leads to an anomalous dispersive shift in the position of laser resonance, as well as unprecedented elimination and enhancement of resonant photoassociation via quantum interference. For off-resonant lasers, a dispersive shift and quantum interference appear similarly in resonant three-body Feshbach losses, except that the Feshbach node is tunable with intensity.  相似文献   

15.
We point out that the recent experiments at ETH on fermions in optical lattices, where a band insulator evolves continuously into states occupying many bands as the system is swept adiabatically across Feshbach resonance, have implications on a wide range of fundamental issues in condensed matter. We derive the effective Hamiltonian of these systems, obtain expressions for their energies and band populations, and point out the increasing quantum entanglement of the ground state during the adiabatic sweep. Our results also explain why only specific regions in k space can be populated after the sweep as found at ETH.  相似文献   

16.
We have observed three Feshbach resonances in collisions between 6Li and 23Na atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identified, and additional 6Li-23Na resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions and could be used to generate ultracold heteronuclear molecules.  相似文献   

17.
Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.  相似文献   

18.
We consider a three-boson system with resonant binary interactions and show that for sufficiently narrow resonances three-body observables depend only on the resonance width and the scattering length. The effect of narrow resonances is qualitatively different from that of wide resonances revealing novel physics of three-body collisions. We calculate the rate of three-body recombination to a weakly bound level and the atom-dimer scattering length and discuss implications for experiments on Bose-Einstein condensates and atom-molecule mixtures near Feshbach resonances.  相似文献   

19.
20.
《Physics letters. A》2014,378(1-2):43-47
We theoretically investigate optical control of magnetic Feshbach resonance in Bose gases with two optical fields. The two optical fields couple two ground states through an excited state. Compared with the usual single-optical scheme, two optical fields can greatly suppress the inelastic loss resulting from spontaneous emission by the destructive quantum interference. Using the mean field theory, the analytical formula of the scattering length is obtained. The results show that the scattering length can be modified in a large range by changing the Rabi frequency or the optical field frequency. The strong atom–molecule interaction has obvious effect on the scattering length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号