首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We study the dynamical scattering in one-dimensional systems with a nonlinear side-coupled defect. Such structures exhibit the nonlinear Fano resonances, where nothing can propagate through. We developed a numerical model to study dynamical scattering. According to our analysis the scattering waves become dynamically unstable in the vicinity of the nonlinear Fano resonances, due to modulational instability caused by the presence of nonlinearity. It results in a time-growing amplitude of the nonlinear defect. We also demonstrate the existence of the nonlinear quasi-localized state, supported by such structures.  相似文献   

2.
张希清  范希武 《发光学报》1994,15(3):257-259
半导体量子阱及超晶格材料具有室温激子效应以及强的光学非线性从而得到人们广泛的重视。利用半导体量子阱和超晶格可以制备出高速度、低闭值、小尺寸及室温工作的半导体激光器、光双稳器件等一系列光电子器件.  相似文献   

3.
Shapira A  Arie A 《Optics letters》2011,36(10):1933-1935
We report on a new (to our knowledge) configuration incorporating both birefringence and quasi-phase-matching, enabling efficient phase-matched nonlinear diffraction in one-dimensional periodically poled nonlinear crystals. We demonstrate the method experimentally, showing an efficient nonlinear diffraction to the first few orders in two types of crystals, MgO doped congruent lithium niobate and congruent lithium niobate, and characterize its efficiency dependence on the fundamental power, the propagation angle, and the crystal temperature. This configuration can increase efficiencies observed in nonlinear diffraction experiments, enables ferroelectric domain characterization by nonlinear microscopy, and can be used to determine the duty cycles of periodically poled nonlinear crystals.  相似文献   

4.
We present the first study of subwavelength discrete solitons in nonlinear metamaterials: nanoscaled periodic structures consisting of metal and nonlinear dielectric slabs. The solitons supported by such media result from a balance between tunneling of surface plasmon modes and nonlinear self-trapping. The dynamics in such systems, arising from the threefold interplay between periodicity, nonlinearity, and surface plasmon polaritons, is substantially different from that in conventional nonlinear dielectric waveguide arrays. We expect these phenomena to inspire fundamental studies as well as potential applications of nonlinear metamaterials, particularly in subwavelength nonlinear optics.  相似文献   

5.
By solving a pair of normalized nonlinear coupled-mode equations, we analyze in detail the propagation of ultrashort optical pulses in a nonlinear long-period fiber grating and investigate the conditions for the grating to function as an optical limiter or a saturable absorber. We show that the function of the grating depends on whether the nonlinear effect counteracts or enhances the detuning effect, and the nonlinear effect can be weakened significantly by the group-delay difference between the core mode and the coupled cladding mode. We present simulation results to illustrate these effects and discuss the physical conditions required for an effective operation of a nonlinear long-period grating.  相似文献   

6.
We propose using a nonlinear phase-shift interferometric converter (NPSIC), a new device, for lumped compensation for nonlinearity in optical fibers. The NPSIC is a nonlinear analog of the Mach-Zehnder interferometer and provides a way to control the sign of the nonlinear phase shift. We investigate a potential use of the NPSIC for compensation for nonlinearity to develop a dispersion-managed system that is closer to an ideal linear system. More importantly, the NPSIC can be used to essentially improve single-channel capacity in the nonlinear regime.  相似文献   

7.
Systems with constraints, the masses in which move only along guides, can execute strongly nonlinear vibrations. This means that nonlinear phenomena manifest themselves at arbitrary small deviations from equilibrium. The form of vibrations of a single mass is described by elliptical Jacobi functions. The spectrum of these vibrations is found. With an increase in amplitude, the period of vibrations decreases. We deduce equations of strongly nonlinear vibrations of a chain of connected masses. In the continuum limit, we obtain a new nonlinear equation in partial derivatives. We devise transformation of variables leading to linearization of this equation. We implemented a factorization procedure that decreases the order of the equation in partial derivatives from second to first. Exact solutions to the first-order equation describe the slow evolution of the displacement profile in a distributed system. In the absence of preliminary tension of elastic elements in the continued model, traveling waves cannot be achieved; however, time-oscillating solutions like standing waves are possible. We obtain an equation for a field of strongly nonlinear deformations. Its exact solution describes periodic movement in time and space. As well, the period of time oscillations decreases with an increase in amplitude, and the spatial period, in contrast, increases. The product of the vibration frequency multiplied by the spatial period is a constant that depends on the deformation energy. We propose a scheme of the mechanical system producing strongly nonlinear torsional vibrations. We experimentally measured the period of torsional vibrations of a single disc. We show that with an increase in amplitude in the process of vibration attenuation, an increase in the period occurs, which agrees with calculations. We measure the shapes of nonlinear vibrations of a chain of connected discs. A strongly nonlinear behavior of the chain is observed.  相似文献   

8.
We show that Bose-Einstein condensates in a honeycomb optical lattice can be described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincaré covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion of all symmetries broken and maintained.  相似文献   

9.
We propose and investigate a class of structural surfaces (metasurfaces). We develop the perturbation theory and the effective medium theory to study the thermal properties of the metasurface. We report that the coefficient of temperature-dependent (nonlinear) item in thermal conductivity can be enhanced under certain conditions. Furthermore, the existence of nonlinear item helps to generate high-order harmonic frequencies of heat flux in the presence of a heat source with periodic temperature. This work paves a different way to control and manipulate the transfer of heat, and it also makes it possible to develop nonlinear thermotics in the light of nonlinear optics.  相似文献   

10.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

11.
Shapira A  Shiloh R  Juwiler I  Arie A 《Optics letters》2012,37(11):2136-2138
We develop a technique for two-dimensional arbitrary wavefront shaping in quadratic nonlinear crystals by using binary nonlinear computer generated holograms. The method is based on transverse illumination of a binary modulated nonlinear photonic crystal, where the phase matching is partially satisfied through the nonlinear Raman-Nath process. We demonstrate the method experimentally showing a conversion of a fundamental Gaussian beam pump light into three Hermite-Gaussian and three Laguerre-Gaussian beams in the second harmonic. Two-dimensional binary nonlinear computer generated holograms open wide possibilities in the field of nonlinear beam shaping and mode conversion.  相似文献   

12.
We consider the parametric amplification of a light beam in nonlinear photonic crystals (NLPCs) under a high-frequency pump and periodic spatial modulation of the coefficient of nonlinear coupling of the waves. We study the behavior of the intensity of the amplified diffracting beam using the matrix approach. We compare our results with the parametric interaction of beams in homogeneous nonlinear optical crystals. We show that the analysis of diffraction effects at nonlinear optical interaction in NLPCs, taking into account only noncompensated quasi-phase mismatching, is incorrect.  相似文献   

13.
14.
We describe a continuous analog of the quasirectangular flat-top nonlinear modes earlier found for discrete nonlinear models. We show that these novel nonlinear modes can be understood as multi-soliton complexes with either in-phase or out-of-phase neighboring solitons trapped by the periodic potential of the lattice. We demonstrate a link between the flat-top states and the truncated nonlinear Bloch waves, and discuss how these nonlinear localized modes can be monitored experimentally in photonics and Bose–Einstein condensates. PACS 42.65.Tg; 42.65.Jx; 03.75.Lm  相似文献   

15.
We consider the propagation of wave packets for the nonlinear Schrödinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, the nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.  相似文献   

16.
We apply a nonlinear prediction algorithm to investigate the presence of nonlinear structure in electroencephalogram (EEG) recordings. The EEG signal could be modeled as a realization of a nonlinear model plus a residual noise (uncorrelated Gaussian noise). Using linear and nonlinear models we analyze the statistical nature of these residual noises in the case of epileptic patients and normal subjects. We found that the residual noise presents Gaussian distribution for epileptic patients if a nonlinear model is used whereas in the case of normal subjects the residual noise will exhibit a Gaussian distribution only if a linear model (autoregressive) is used. These results provide another evidence of the nonlinear character of the epileptic seizure recordings, while the normal EEG seems to be better described as linearly correlated noise.  相似文献   

17.
We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles and analyze numerically nonlinear scenarios of the instability development. We demonstrate that modulational instability can lead to the formation of regular periodic or quasiperiodic modulations of the polarization. We reveal that such nonlinear nanoparticle arrays can support long-lived standing and moving oscillating nonlinear localized modes--plasmon oscillons.  相似文献   

18.
We describe novel physics of nonlinear magnetoinductive waves in left-handed composite metamaterials. We derive the coupled equations for describing the propagation of magnetoinductive waves, and show that in the nonlinear regime the magnetic response of a metamaterial may become bistable. We analyze modulational instability of different nonlinear states, and also demonstrate that nonlinear metamaterials may support the propagation of domain walls (kinks) connecting the regions with the positive and negative magnetization.  相似文献   

19.
We study higher-order nonlinear modes in the form of vortex solitons and soliton clusters propagating in the waveguides created in photonic crystal fibers made of a material with the focusing Kerr nonlinearity. We find numerically different families of such nonlinear modes with a nontrivial topology and study their bifurcations. We also study the soliton stability to propagation. We demonstrate that waveguides in photonic crystal fibers may support a variety of soliton clusters with the symmetries that may differ from the lattice symmetry. We also discuss briefly the case of a dual-core coupler created by two neighboring cores in a photonic crystal fiber and find numerically the profiles of symmetric and asymmetric nonlinear modes.  相似文献   

20.
Under strong laser illumination, few-layer graphene exhibits both a transmittance increase due to saturable absorption and a nonlinear phase shift. Here, we unambiguously distinguish these two nonlinear optical effects and identify both real and imaginary parts of the complex nonlinear refractive index of graphene. We show that graphene possesses a giant nonlinear refractive index n(2)?10(-7) cm(2) W(-1), almost 9 orders of magnitude larger than bulk dielectrics. We find that the nonlinear refractive index decreases with increasing excitation flux but slower than the absorption. This suggests that graphene may be a very promising nonlinear medium, paving the way for graphene-based nonlinear photonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号