首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
强流电子束束心横向运动调谐技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
 介绍了为抑制“神龙一号”加速器束流束心螺旋运动而开展的强流电子束束心轨迹的调谐技术研究和实验结果。通过束质心轨迹校正调谐,使“神龙一号”输出束流脉冲50 ns平顶部分螺旋模的振幅由大于4 mm减小到小于1 mm。同时介绍了调谐原理和方法,相关的数值模拟结果与实验结果的比较以及正在进行中的计算机智能调谐研究。  相似文献   

2.
A semiclassical analysis of a two-dimensional electron droplet in a high, nonuniform magnetic field predicts that the droplet will form "fingered" patterns upon increasing the number of electrons. We construct explicit examples of these patterns using methods first developed for the flow of two-dimensional viscous fluids. We complement our analytical results with Monte Carlo simulations of the droplet wave function, and find that at the point where the semiclassical analysis predicts a cusp on the interface, the droplet fissions-a type of "quantum breakup" phenomenon.  相似文献   

3.
Two-dimensional Hall magnetohydrodynamic simulations are used to determine the magnetic reconnection rate in the Hall limit. The simulations are run until a steady state is achieved for four initial current sheet thicknesses: L=1,5,10, and 20c/omega(pi), where c/omega(pi) is the ion inertial length. It is found that the asymptotic (i.e., time independent) state of the system is nearly independent of the initial current sheet width. Specifically, the Hall reconnection rate is weakly dependent on the initial current layer width and is partial differential Phi/ partial differential t less, similar 0.1V(A0)B0, where Phi the reconnected flux, and V(A0) and B0 are the Alfvén velocity and magnetic field strength in the upstream region. Moreover, this rate appears to be independent of the scale length on which the electron "frozen-in" condition is broken (as long as it is 相似文献   

4.
Atmospheric-pressure methane–hydrogen micro glow discharges were computationally investigated using a 2-D hybrid model. The plasma model was solved simultaneously with a model for the external circuit. Simulations were conducted for a pin-to-plate electrode configuration with an interelectrode separation of 400 ${rm mu}hbox{m}$. The spatiotemporal evolutions of electrons, species densities, electric field, and electron and gas temperatures were studied. A total of 81 reactions were considered, which included electron–neutral, electron–ion, ion–neutral, and neutral–neutral reactions. An 84-step reaction mechanism consisting of 15 surface species and four deposited bulk species was considered. A time-stepping technique was employed to address the time scales of plasma transport (in microseconds) and neutral and fluid transport (in milliseconds) in 2-D simulations with detailed volume and surface chemistry. The simulations indicated $hbox{H}_{3}^{+}$ and $hbox{CH}_{5}^{+}$ ions to be the most prominent hydrogen and hydrocarbon ions. The gas temperature predictions suggested the discharge to be operating as a nonthermal glow discharge. The effect of discharge current on both plasma and deposition characteristics was studied. The simulations predicted a flat voltage–current characteristic, indicating the discharge to be operating in normal glow mode. The predicted voltage–current characteristic was found to be in favorable agreement with the experimental measurements. With an increase in discharge current, the deposition rate profile expanded in the lateral direction, suggesting that deposition occurred at the cathode spot.   相似文献   

5.
We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.  相似文献   

6.
The Particle In Cell/Monte Carlo Collisions (PIC/MCC) simulation was used for the calculation of electron and ion currents to a spherical Langmuir (electrostatic) probe. This simulation took into account the collisions of collected charged particles with neutral gas particles around the probe and it can calculate the probe currents at higher neutral gas pressures. The improvements of usual simulation techniques enabled to speed up the simulation and to calculate the probe current even for neutral gas pressures above 1 kPa. The simulations were carried out for two cases: i) probe with radius of 0.5 mm in non‐thermal plasma with high electron temperature, ii) probe with radius of 10 µm in afterglow plasma with low electron temperature. The influence of probe radius on electron probe current was also studied. The simulations showed that thick sheath limit of OML theory provides incorrect values of probe current for probes with radii larger than 200 µm at plasma parameters considered even at very low neutral gas pressures. The probe characteristics were calculated for probe with 0.5 mm radius for pressures up to 500 Pa and for probe with 10 μm radius for pressures up to 3 kPa. The influence of collisions on electron and ion probe current was demonstrated and the procedure for determination of electron and ion densities from the probe measurement at higher pressures was developed. The results from PIC/MCC simulations were compared with results from continuum theory. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We report on the design and first experiments of Si/SiGe heterostructures that allow gate-operated shifting of a 2D electron gas between two channels with different Landé g-factors. This allows gate-operated moving of electrons in and out of resonance in an electron spin resonance (ESR) experiment, which can act as a building block of a proposed solid-state quantum computer. We use MBE-grown modulation-doped quantum-wells (QWs) on SiGe pseudosubstrates with up to 30% Ge and low-temperature electron mobilities up to . A double QW structure with two different Ge contents separated by a thin barrier was optimized for this purpose with self-consistent simulations. The band structure simulations show that by applying gate voltages one can completely shift the wave function from one well to the other. First experiments on pure Si channels show the working of the gate setup. Both carrier density and mobility can be increased by using the back gate which corresponds to shifting the wave function in the channel.  相似文献   

8.
With the development of free electron laser (FEL) and the international linear collider (ILC), the electron bunch length is getting smaller and smaller. The traveling-wave transverse RF deflecting structure is an important part of the RF deflecting method for bunch length measurement and phase space diagnostics.The operation mode in RF deflector is the "TM11-like" mode. Since the TM11-like mode in this structure has a pair of degenerate dipole modes, two additional holes are provided on either side of each iris to stabilize the mode. The simulation and optimization have been done. A prototype has been fabricated and tested. The cold test results have been compared with the simulations of the first three modes.  相似文献   

9.
10.
 介绍了自行研制的全电磁柱坐标粒子模拟程序的电流分配方法和金属爆炸电子发射边界的模拟实现,该电流分配方法满足电荷电流连续性方程,避免了繁琐的泊松修正,适用于复杂边界物理问题的模拟研究。基于此电流分配方法的基础上,给出了建立在高斯定理基础上的简单且易于程序实现的阴极发射边界算法。利用该程序对平面二极管电子发射现象的模拟结果证明了算法的正确性。  相似文献   

11.
We present the first transport measurements of a classical Wigner crystal through a constriction formed by a split-gate electrode. The Wigner crystal is formed on the surface of superfluid helium confined in a microchannel. At low temperatures, the current is periodically suppressed with increasing split-gate voltage, resulting in peaklike transport features. We also present the results of molecular dynamics simulations that reproduce this phenomenon. We demonstrate that, at the split-gate voltages for which the current is suppressed, the electron lattice is arranged such that the stability of particle positions against thermal fluctuations is enhanced. In these configurations, the suppression of transport due to interelectron Coulomb forces becomes important.  相似文献   

12.
A simulation study of lateral current injection 1.55 m laser with strain-compensated multiple quantum-well (MQW) active region (InGaAsP well, InGaAlAs barrier) is presented using self-consistent 2D numerical simulations. The effects of different mesa width and p-doping in the QWs on the carrier and gain uniformity across the active region are explored. A high p-doping in the quantum wells is found to increases the carrier and gain non-uniformity across the active region. The QW region close to the n-contact side does not provide much gain at high optical powers. An asymmetric optical waveguide design is proposed to help reduce the gain non-uniformity across the active region. By shifting the optical modal peak toward the p-side, the modal overlap between the gain region and the optical mode is improved and a more even carrier and gain distribution is obtained. However, due to reduced bandgap of the quaternary InGaAsP p-cladding, an enhanced electron leakage out of the QWs into the p-cladding degrades the laser efficiency and increases the threshold current. Transient time–domain simulations are also performed to determine the small-signal modulation response of the laser promising a simulated high modulation bandwidth suitable for direct-modulation applications.  相似文献   

13.
Magnetically self-insulated lines operating at high electric field stress have a high percentage of the current flow in an electron sheath adjacent to the cathode. Recovery of the current in this sheath is desirable for efficient power transport. The Sandia National Laboratories HydraMITE accelerator has a magnetically insulated transmission line (MITL) which has a 7.6-? geometric impedance and operates at 4.8 ?, indicating that approximately 40 percent of the current flows in the electron sheath. If this line is terminated in a section of higher impedance line, theory and simulations indicate that the electron sheath current will be lower at the output. This higher impedance section, however, is effectively an inductance across which there is a voltage drop during the rising part of the pulse. An experiment was conducted on the HydraMITE machine in which input and output currents were measured on a section of line which the impedance changed smoothly from 7.6 ? to 20 ?. At the output the electron current was a few percent of the total current. Measurements were made with a range of inductive and resistive loads. The input and output currents were then compared to lumped circuit line simulations to separate losses related to inductance from electron sheath losses. The measurements indicate that a percentage of the electron sheath is recovered which depends on the load impedance and that the recovery is more efficient after the pulse voltage peak where potential drop along the increased impedance line aids retrapping of electrons.  相似文献   

14.
15.
A novel internal target has been developed, which will make electron scattering off short-lived radioactive nuclei possible in an electron storage ring. An "ion trapping" phenomenon in the electron storage ring was successfully utilized for the first time to form the target for electron scattering. Approximately 7 x 10(6) stable 133Cs ions were trapped along the electron beam axis for 85 ms at an electron beam current of 80 mA. The collision luminosity between the stored electrons and trapped Cs ions was determined to be 2.4(8) x 10(25) cm(-2) s(-1) by measuring elastically scattered electrons.  相似文献   

16.
17.
翁苏明  盛政明  张杰 《物理学报》2009,58(12):8454-8460
通过Fokker-Planck模拟,研究了等离子体在任意强度的直流电场中产生电流的过程以及电子分布函数的演变过程.研究发现,不同强度的电场中等离子体的行为存在着明显的差别.在弱电场中,电流与电场满足Spitzer公式,且电流产生的响应时间约等于撤销电场后电流衰减的弛豫时间;在中等强度的电场中,电子分布函数呈现为静止Maxwell分布和漂移Maxwell分布之和,而且在中等强度或者强直流电场中弛豫时间也将远远大于响应时间.根据电子分布函数的演变规律,推导了一组类似于流体力学方程的公式,这组方程像Spitzer公式一样简便地描述了等离子体中电流与电场的关系,并且对电场强度没有限制.数值模拟显示这组方程比Spitzer公式更适用于等离子体的混合粒子模拟中. 关键词: 等离子体电流 电子分布函数 Fokker-Planck模拟 Spitzer公式  相似文献   

18.
Strong electron pressure anisotropy has been observed upstream of electron diffusion regions during reconnection in Earth's magnetotail and kinetic simulations. For collisionless antiparallel reconnection, we find that the anisotropy drives the electron current in the electron diffusion region, and that this current is insensitive to the reconnection electric field. Reconstruction of the electron distribution function within this region at enhanced resolutions reveals its highly structured nature and the mechanism by which the pressure anisotropy sets the structure of the region.  相似文献   

19.
Particle-in-cell simulations of collisionless magnetic reconnection are presented that demonstrate that reconnection remains fast in very large systems. The electron dissipation region develops a distinct two-scale structure along the outflow direction. Consistent with fast reconnection, the length of the electron current layer stabilizes and decreases with decreasing electron mass, approaching the ion inertial length for a proton-electron plasma. Surprisingly, the electrons form a super-Alfvénic outflow jet that remains decoupled from the magnetic field and extends large distances downstream from the x line.  相似文献   

20.
Nitride-based light-emitting diodes suffer from a reduction (droop) of the internal quantum efficiency (IQE) with increasing injection current. Using advanced device simulation, we investigate the impact of electron leakage on the IQE droop for different properties of the electron blocker layer (EBL). The simulations show a strong influence of the EBL acceptor density on the droop. We also find that the electron leakage decreases with increasing temperature, which contradicts common assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号