首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report new method for selectively removing the metallic CNTs from semiconducting CNTs in a powder using high-power microwave radiation in the infrared and radio frequency range of the electromagnetic spectrum. SWNTs in a powder film were heated in a 2.5 GHz microwave oven for a few minutes, and the metallic nanotubes burned more rapidly than the semiconducting nanotubes. Raman data showed that the ratio of metallic to semiconducting nanotubes decreased dramatically after exposure to microwave radiation. Using their more rapid absorption of the radiation energy of the microwaves, we achieved the selective removal of metallic SWNTs from semiconducting SWNTs. This method results in the high-purity of semiconducting SWNTs necessary for sensor and electronic applications.  相似文献   

2.
We studied the femtosecond dynamics of photoexcitations in films containing semiconducting and metallic single-walled carbon nanotubes (SWNTs), using various pump-probe wavelengths and intensities. We found that confined excitons and charge carriers with subpicosecond dynamics dominate the ultrafast response in semiconducting and metallic SWNTs, respectively. Surprisingly, we also found from the exciton excited state absorption bands and multiphoton absorption resonances in the semiconducting nanotubes that transitions between subbands are allowed; this unravels the important role of electron-electron interaction in SWNT optics.  相似文献   

3.
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1–1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.  相似文献   

4.
We report optical properties of the smallest single-walled carbon nanotubes (SWNTs) with a diameter of only 3 A. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of an AlPO-11 (AEL) single crystal. Polarized and resonant Raman scattering unambiguously revealed that these 0.3 nm SWNTs are of (2,2) armchair symmetry. Interestingly, the (2,2) armchair tube has two metastable ground states corresponding to two slightly different lattice constants in the axial direction: one state is metallic and the other is semiconducting.  相似文献   

5.
在考虑曲率效应的情况下,在螺旋坐标系下解析地推导了非手性的碳纳米管(SWNTs)(包括扶手椅型和锯齿型)的能量色散关系,并分析了曲率效应对超小扶手椅型SWNTs的能带、能隙和导电能力及其对超小锯齿型SWNTs(包括扶手椅型和锯齿型)的能隙的影响.  相似文献   

6.
We report the direct experimental observation of the semiconductor-metal transition in single-wall carbon nanotubes (SWNTs) induced by compression with the tip of an atomic force microscope. This transition is probed via electric force microscopy by monitoring SWNT charge storage. Experimental data show that such charge storage is different for metallic and semiconducting SWNTs, with the latter presenting a strong dependence on the tip-SWNT force during injection. Ab initio calculations corroborate experimental observations and their interpretation.  相似文献   

7.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

8.
Charge transport in semiconducting single-walled nanotubes (SWNTs) with Schottky-barrier contacts has been studied at high bias. We observe nearly symmetric ambipolar transport with electron and hole currents significantly exceeding 25 microA, the reported current limit in metallic SWNTs due to optical phonon emission. Four simple models for the field-dependent velocity (ballistic, current saturation, velocity saturation, and constant mobility) are studied in the unipolar regime; the high-bias behavior is best explained by a velocity-saturation model with a saturation velocity of 2 x 10(7) cm/s.  相似文献   

9.
Single-walled carbon nanotubes (SWNTs) have many interesting properties; they may be metallic or semiconducting depending on their diameter and helicity of the graphene sheet. Hydrostatic or quasi-hydrostatic high pressures can probe many electronic features. Resistance-temperature measurements in SWNTs from normal condition and under 0.4 GPa of quasi-hydrostatic pressures reveal a semiconducting-like behavior. From 0.5 to about 2.0 GPa, the resistance changes to a Kondo-like feature due to magnetic impurities used to catalyse the nanotube formation. Above 2.0 GPa, they become metallic and at about 2.4 GPa, the resistance decreases dramatically around 3 K suggesting a superconducting transition.  相似文献   

10.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

11.
The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

12.
The adsorption of glucose molecule on single-walled carbon nanotubes (SWCNTs) is investigated by density functional theory calculations. Adsorption energies and equilibrium distances are evaluated, and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared. We also investigated the role of the structural defects on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the larger diameters semiconducting CNTs, while the story is paradoxical for the metallic CNTs. The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles. Finally, the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon, hexagon, and heptagon sites in the tube surface. We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs. The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption. Consequently, one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

13.
赵华波  王亮  张朝晖 《物理学报》2011,60(8):87302-087302
利用物理蒸发技术,在半导体性的碳纳米管上沉积钯金属,利用导电原子力显微镜检测钯吸附对碳纳米管电输运的影响.结果表明:沉积的钯在碳纳米管上形成纳米颗粒,随着钯颗粒密度的增加,半导体性碳纳米管逐渐向金属性转变.利用第一性原理计算了吸附有钯原子的半导体性单壁碳纳米管的能带结构.研究发现,钯的覆盖率越高,其禁带宽度越窄,直至为零,定性说明了实验结果的合理性. 关键词: 单壁碳纳米管 钯纳米颗粒 导电原子力显微镜 第一性原理计算  相似文献   

14.
Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at Elaser = 1.17 eV suggest that a charge‐transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We show that single-walled carbon nanotube (SWNT) bundles emit visible fluorescence in the presence of noble metal nanoparticles and nanorods in the solid state. Conductivity measurements with metallic nanotubes, isolated from pristine SWNTs, show that they become semiconducting in the presence of the metal nanoparticles. Nanoparticle binding increases the defects in the nanotube structures which is evident in the Raman spectra. The metal-semiconductor transition removes the nonradiative decay channels of the excited states enabling visible fluorescence. Nanotube structures are imaged using this emission with resolution below the classical limits.  相似文献   

16.
We report measurements of the valence band width in compressed Ge determined from x-ray emission spectra below the Ge K edge. The width of the valence band does not show any pressure dependence in the semiconducting diamond-type structure of Ge below 10 GPa. On the other hand, in the metallic beta-Sn phase above 10 GPa the valence band width increases under compression. Density-functional calculations show an increasing valence band width under compression both in the semiconducting phase (contrary to experiment) and in the metallic beta-Sn phase of Ge (in agreement with observed pressure-induced broadening). The pressure-independent valence band width in the semiconducting phase of Ge appears to require theoretical advances beyond the density-functional theory or the GW approximation.  相似文献   

17.
The zone-boundary LO—phonon frequencies of SmS show a “softening” in the semiconducting as well as in the valence-fluctuating metallic phase. This has been interpreted as a renormalization of the phonon frequencies due to the phonon-induced on-site ?-d hybridization interaction. Renormalized phonon frequencies, which are calculated as a function of the ?-d energy gap, show a larger “softening” in the semiconducting phase than in the metallic phase, being in qualitative agreement with experiment.  相似文献   

18.
Single-walled carbon nanotubes(SWCNTs),due to their outstanding electrical and optical properties,are expected to have extensive applications,such as in transparent conductive fims and ultra-small field-effect transistors(FETs).However,those applications can only be best realized with pure metallic or pure semiconducting SWCNTs.Hence,identifying and separating metallic from semiconducting SWCNTs in as-grown samples are crucial.In addition,knowledge of the type of an SWCNT is also important for further exploring its new properties in fundamental science.Here we report employing scanning near-field optical microscopy(SNOM) as a direct and simple method to identify metallic and semiconducting SWCNTs on SiO_2/Si substrates.Metallic and semiconducting SWCNTs show distinct near-field optical responses because the metallic tubes support plasmons whereas the semiconducting tubes do not.The reliability of this method is verified using FET testing and Rayleigh scattering spectroscopy.Our result demonstrates that the SNOM technique provides a reliable,simple,noninvasive and in situ method to distinguish between metallic and semiconducting SWCNTs.  相似文献   

19.
The Raman spectrum of single wall carbon nanotubes (SWNTs) prepared by high pressure CO decomposition (HiPCO process) has been recorded at nine excitation laser energies ranging from 1.83 eV to 2.71 eV. The characteristic nanotubes features: G band, D band and radial breathing mode (RBM) have been analyzed and compared to those of an arc discharge SWNT material of similar diameter. A strong Breit-Wigner-Fano type (metallic) contribution to the G band was found in the spectra measured with green lasers, while spectra measured with red lasers indicate resonances of semiconducting SWNTs. Analysis of the energy dependence of the position of the D band revealed sinusoid oscillations superimposed on a linear trend. The validity of full DOS calculations for HiPCO materials has been confirmed by a match found between the estimated spectral contribution of metallic SWNTs as calculated from the components of the measured G band and as predicted by the (n, m) indexes of the major scatterers of DOS simulations. The RBM region of the HiPCO spectrum is more complex than usually observed for SWNTs. The analysis performed with a Gaussian distribution and improved fitting parameters leads to a mean diameter and variance of 1.05 nm and 0.15 nm, respectively. A bimodal Gaussian distribution had little influence on the error sum but reduced the standard error slightly. The major spectral features of the RBM could be interpreted using available resonance Raman theory. Received 5 February 2002 / Received in final form 3 April 2002 Published online 19 July 2002  相似文献   

20.
Extraction of semiconducting CNTs by repeated dielectrophoretic filtering   总被引:1,自引:0,他引:1  
We have separated semiconducting carbon nanotubes from as-grown batch material (HiPco production). A special configuration of electrodes which generates a 3-dimensional electric field gradient was used to filter out and deposit metallic carbon nanotubes by the dielectrophoretic method, leaving the remaining dispersion enriched in semiconducting nanotubes. The efficiency of filtering was determined by Raman spectroscopy. Using repeated deposition cycles, the ratio of semiconducting to metallic tubes was increased. After seven cycles, the proportion of semiconducting tubes in the remaining dispersion reached 94%. PACS 61.46.+w; 81.07.De  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号