首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.  相似文献   

2.
3.
We report a theoretical study of the dynamic response of electrons in a metallic nanowire or a two-dimensional electron gas under a capacitively coupled "spot gate" driven by an ac voltage. A dynamic standing Friedel wave (SFW) is formed near the spot gate and near edges and boundaries, analogous to the static Friedel oscillations near defects. The SFW wavelength is controlled by the ac voltage frequency and the device's Fermi velocity, whereby the latter can be measured. In addition, the SFW amplitude exhibits resonant behavior at driving frequencies that are related to eigenenergy spacings in the device, allowing their direct measurement.  相似文献   

4.
Santanu K. Maiti   《Solid State Communications》2009,149(39-40):1684-1688
We explore the OR gate response in a mesoscopic ring threaded by a magnetic flux . The ring is symmetrically attached to two semi-infinite one-dimensional metallic electrodes, and two gate voltages, Va and Vb, are applied in one arm of the ring; these are treated as the two inputs of the OR gate. All the calculations are based on the tight-binding model and the Green’s function method, which numerically compute the conductance–energy and current–voltage characteristics as functions of the gate voltages, ring-to-electrode coupling strengths and magnetic flux. Our theoretical study shows that, for =0/2 (0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if one or both the inputs to the gate are high (1), while if neither input is high (1), a low output current (0) appears. It clearly demonstrates the OR gate behavior, and this aspect may be utilized in designing an electronic logic gate.  相似文献   

5.
We study the control of gate voltage over the magnetization of a single-molecule magnet(SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes.It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving of the temperature gradient.Under an appropriate matching of the electrode polarization,the temperature difference and the pulse width of gate voltage,the SMM's magnetization can be completely reversed in a period of gate voltage.The corresponding flipping time can be controlled by the system parameters.In addition,we also investigate the tunneling anisotropic magnetoresistance(TAMR) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM,and show the jump characteristic of the TAMR.  相似文献   

6.
《Current Applied Physics》2010,10(5):1302-1305
Bottom-contact (BC) copper phthalocyanine (CuPc) thin film transistor with UV/ozone treated Au as a source/drain electrode was fabricated and the contact resistance was estimated from the transmission line method (TLM). Comparing the properties of OTFT with untreated Au electrode, the performance of the BC CuPc-TFT with the UV/ozone treated Au electrodes was significantly improved: saturation mobility increased from 4.69 × 10−3 to 2.37 × 10−2 cm2/V s, threshold voltage reduced from −29.1 to −6.4 V, and threshold swing varied from 5.08 to 2.25 V/decade. The contact resistance of the device with UV/ozone treated Au electrodes was nearly 20 times smaller than that of the device with untreated Au electrodes at the gate voltage of −20 V. This result indicated that using the UV/ozone treated Au electrode is an effective method to reduce the contact resistance. The present BC configuration with UV/ozone treated Au electrodes could be a significant step towards the commercialization of OTFT technology.  相似文献   

7.
The optimal tube length of capacitive-discharge and glow-discharge excimer lamps with ring and circular electrodes of equal radii is considered. It is demonstrated that, at the same potential difference between electrodes and their radii, the ratio of the optimal lengths of the tubes with circular and ring electrodes depends on width L of the ring electrodes. The ratio of the lengths decreases with decreasing L. A relationship between the tube length and radius, the width of ring electrodes, and the minimum voltage at the tube that provide for an approximately uniform glow of the discharge column in the presence of voltage pulses with opposite polarities at the electrodes is derived.  相似文献   

8.
Spin-polarized transport through a coupled double-dot   总被引:1,自引:0,他引:1  
We investigate the quantum transport through a mesoscopic device consisting of an open, lateral double-quantum-dot coupled by time oscillating and spin-polarization dependent tunneling which results from a static magnetic field applied in the tunneling junction. In the presence of a non-vanishing bias voltage applied to two attached macroscopic leads both spin and charge currents are driven through the device. We demonstrate that the spin and charge currents are controllable by adjusting the gate voltage, the frequency of driving field and the magnitude of the magnetic field as well. An interesting resonance phenomenon is observed.  相似文献   

9.
We investigate theoretically the spin Hall current in an inhomogeneous Rashba mesoscopic ring attached to four terminals. It is shown that a voltage drop can be tuned by adjusting the gate voltage due to the inhomogeneous Rashba effect, and provides us a tool to measure spin Hall current electrically. The spin Hall current and the ratio of the probe voltages can survive and keep their obvious relationship even in the presence of disorder. The regular relationship between the spin Hall conductance and the ratio of the probe voltages will be destroyed by the interference between different channels in multi-channel ring.  相似文献   

10.
Santanu K. Maiti   《Solid State Communications》2009,149(39-40):1623-1627
We address XOR gate response in a mesoscopic ring threaded by a magnetic flux . The ring, composed of identical quantum dots, is symmetrically attached to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, Va and Vb, are applied, respectively, in each arm of the ring which are treated as the two inputs of the XOR gate. The calculations are based on the tight-binding model and the Green’s function method, which numerically compute the conductance–energy and current–voltage characteristics as functions of the ring-electrodes coupling strengths, magnetic flux and gate voltages. Quite interestingly it is observed that, for =0/2 (0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears if one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or both are high (1), a low output current (0) appears. It clearly demonstrates the XOR behavior and this aspect may be utilized in designing the electronic logic gate.  相似文献   

11.
A new AlGaN/GaN high electron mobility transistor (HEMT) employing Ni/Au Schottky gate oxidation and benzocyclobutene (BCB) passivation is fabricated in order to increase a breakdown voltage and forward drain current. The Ni/Au Schottky gate metal with a thickness of 50/300 nm is oxidized under oxygen ambient at 500 C and the highly resistive NiO is formed at the gate edge. The leakage current of AlGaN/GaN HEMTs is decreased from 4.94 μA to 3.34 nA due to the formation of NiO. The BCB, which has a low dielectric constant, successfully passivates AlGaN/GaN HEMTs by suppressing electron injection into surface states. The BCB passivation layer has a low capacitance, so BCB passivation increases the switching speed of AlGaN/GaN HEMTs compared with silicon nitride passivation, which has a high dielectric constant. The forward drain current of a BCB-passivated device is 199 mA /mm, while that of an unpassivated device is 172 mA /mm due to the increase in two-dimensional electron gas (2DEG) charge.  相似文献   

12.
An all-fiber nanosecond Kerr light gate is described that was constructed using microstructured fibers. The switching voltage for a 20?cm long device is as low as Vπ~85 V at a 1.06?μm wavelength. The device is fully spliced. The active element is a three-hole fiber provided with internal electrodes in the side-holes and a liquid core of nitrobenzene, which is fully enclosed. This work allows the exploiting of electrically driven liquid-core fibers and demonstrated the removal of the major limitations of Kerr cells in the past, allowing for integration, safe use, and relatively low switching voltage.  相似文献   

13.
An improved planar-gate triode with carbon nanotubes (CNTs) field emitters has been successfully fabricated by conventional photolithography, screen printing and electrophoretic deposition (EPD). In this structure, cathode electrodes and ITO arrays linked with gate electrodes were interdigitated and paralleled on the same plane although the gate electrodes and cathode electrodes were isolated by dielectric layer, a so-called improved planar-gate triode structure. An electrophoretic process was developed to selectively deposit CNTs field emitters onto cathode electrodes in the CNTs suspension by an applied voltage between the gate electrodes and cathode electrodes. The optical microscopy and FESEM image showed that the CNTs emitters with the uniform packing density were selectively defined onto the cathode electrodes. In addition, field emission characteristics of an improved planar-gate triode with CNTs field emitters were investigated. The experiment results indicated that the turn-on voltage of this triode structure at current density of 1 μA/cm2 was approximately 55 V. The anode current and gate current came to 396 μA and 325 μA, at gate voltage and anode voltage of 100 V and 4000 V, respectively and at the anode-cathode spacing of 2000 μm. The emission image became brighter and the luminous image with dot matrix on the anode plate obviously increased with the increase of the gate voltage. Moreover, the emission current fluctuation was smaller than 5% for 11 h, which indicated that the improved planar-gate triode has a good field emission performance and long lifetime.  相似文献   

14.
The electronic transport properties of novel NiO monowire connected to the gold electrodes are investigated using density functional theory combined with nonequilibrium Green's functions formalism. The densities of states of the monowire under various bias conditions are discussed. The transport properties are discussed in terms of the transmission spectrum and current–voltage characteristics of NiO monowire. The transmission pathways provide the insight to the transmission of electrons along the monowire. With different bias voltages, current in the order of few microampere flows across the monowire. The applied voltage controls the flow of current through the monowire, which can be used to control the current efficiently in the low order of magnitude in the molecular device.  相似文献   

15.
We present an AlGaN/GaN high-electron mobility transistor(HEMT) device with both field plate(FP) and lowdensity drain(LDD). The LDD is realized by the injection of negatively charged fluorine(F-) ions under low power in the space between the gate and the drain electrodes. With a small-size FP and a LDD length equal to only 31% of the gate-drain spacing, the device effectively modifies the electric field distribution and achieves a breakdown voltage enhancement up to two times when compared with a device with only FP.  相似文献   

16.
胡飞  段玲  丁建文 《物理学报》2012,61(7):77201-077201
基于紧束缚格林函数方法,研究了两半无限长锯齿型石墨纳米带叠层复合结的电子输运性质.结果表明,层间次近邻相互作用、叠层区长度及门电压对复合结的电子透射谱有重要调制作用.层间次近邻相互作用导致复合结的透射谱关于费米能呈现非对称性,与实验结果很好相符.低于费米能第一子能区内周期性出现透射系数为0和1的台阶,呈现全反射与透射现象.随散射结长度增加,透射系数在1内周期性振荡,呈现明显的量子干涉效应.在门电压调控下,低于费米能的透射系数出现了从1到0的转变,类似于开关效应.相关结果对基于石墨烯器件的设计与应用有指导意义.  相似文献   

17.
We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux ?. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, Va and Vb, are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux ?=?0/2 (?0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.  相似文献   

18.
An Al Ga N/Ga N high electron mobility transistor(HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency(RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage V g, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector.  相似文献   

19.
刘一曼  邵怀华  周光辉  朴红光  潘礼庆  刘敏 《中国物理 B》2017,26(12):127303-127303
The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene.In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance(TMR) effect.The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.  相似文献   

20.
We propose a system containing a single pyrene molecule sandwiched between two metallic electrodes. The transport properties of the single pyrene molecule with four configurations are investigated using a steady-state theoretical model. We calculate the transmission probability and the electric current for the structure (1, 8), the structure (1, 7), the structure (1, 5) and the structure (1, 4). By applying a gate voltage on the pyrene molecule, we calculate the thermoelectric properties. The thermoelectric and electron transport properties can be controlled by quantum interference, the contact geometry and the gate voltage. The asymmetric behavior and the splitting of resonances in the transmission spectrum occur due to applying a gate voltage on the pyrene molecule. As a result, the structures (1, 5) and (1, 7) have a maximum value of the figure of merit reaching to 0.8 at the Fermi level. According to the results, the structures (1, 5) and (1, 7) can be act as promising thermoelectric applications in molecular electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号