首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has previously been suggested that small subsystems of closed quantum systems thermalize under some assumptions; however, this has been rigorously shown so far only for systems with very weak interaction between subsystems. In this work, we give rigorous analytic results on thermalization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary strength, in all cases where there is a unique equilibrium state at the corresponding temperature. We clarify the physical picture by showing that subsystems relax towards the reduction of the global Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and certain non-degeneracy conditions on the spectrumare satisfied.Moreover,we showthat almost all pure states with support on a small energy window are locally thermal in the sense of canonical typicality. We derive our results from a statement on equivalence of ensembles, generalizing earlier results by Lima, and give numerical and analytic finite size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is valid regardless of the integrability of the model.  相似文献   

2.
李海彬  杨扬  王沛  王晓光 《中国物理 B》2017,26(8):80502-080502
We propose a quantity called modulus fidelity to measure the closeness of two quantum pure states. We use it to investigate the closeness of eigenstates in one-dimensional hard-core bosons. When the system is integrable, eigenstates close to their neighbor or not, which leads to a large fluctuation in the distribution of modulus fidelity. When the system becomes chaos, the fluctuation is reduced dramatically, which indicates all eigenstates become close to each other. It is also found that two kind of closeness, i.e., closeness of eigenstates and closeness of eigenvalues, are not correlated at integrability but correlated at chaos. We also propose that the closeness of eigenstates is the underlying mechanism of eigenstate thermalization hypothesis(ETH) which explains the thermalization in quantum many-body systems.  相似文献   

3.
4.
We model an isolated quantum computer as a two-dimensional lattice of qubits (spin halves) with fluctuations in individual qubit energies and residual short-range inter-qubit couplings. In the limit when fluctuations and couplings are small compared to the one-qubit energy spacing, the spectrum has a band structure and we study the quantum computer core (central band) with the highest density of states. Above a critical inter-qubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of eigenstates in an isolated quantum computer. The onset of chaos results in the interaction induced dynamical thermalization and the occupation numbers well described by the Fermi-Dirac distribution. This thermalization destroys the noninteracting qubit structure and sets serious requirements for the quantum computer operability. Received 3 July 2001 and Received in final form 9 September 2001  相似文献   

5.
I explore the processes of equilibration exhibited by the Adapted Caldeira–Leggett (ACL) model, a small unitary “toy model” developed for numerical studies of quantum decoherence between an SHO and an environment. I demonstrate how dephasing allows equilibration to occur in a wide variety of situations. While the finite model size and other “unphysical” aspects prevent the notions of temperature and thermalization from being generally applicable, certain primitive aspects of thermalization can be realized for particular parameter values. I link the observed behaviors to intrinsic properties of the global energy eigenstates, and argue that the phenomena I observe contain elements which might be key ingredients that lead to ergodic behavior in larger more realistic systems. The motivations for this work range from curiosity about phenomena observed in earlier calculations with the ACL model to much larger questions related to the nature of equilibrium, thermalization, and the emergence of physical laws.  相似文献   

6.
Based on our recent work on the discretization of the radial \(\hbox {AdS}_2\) geometry of extremal BH horizons, we present a toy model for the chaotic unitary evolution of infalling single-particle wave packets. We construct explicitly the eigenstates and eigenvalues for the single-particle dynamics for an observer falling into the BH horizon, with as time evolution operator the quantum Arnol’d cat map (QACM). Using these results we investigate the validity of the eigenstate thermalization hypothesis (ETH), as well as that of the fast scrambling time bound (STB). We find that the QACM, while possessing a linear spectrum, has eigenstates, which are random and satisfy the assumptions of the ETH. We also find that the thermalization of infalling wave packets in this particular model is exponentially fast, thereby saturating the STB, under the constraint that the finite dimension of the single-particle Hilbert space takes values in the set of Fibonacci integers.  相似文献   

7.
There has been some substantial research about the connections between quantum chaos and quantum correlations in many-body systems. This paper discusses a specific aspect of correlations in chaotic spin models, through concurrence (CC) and quantum discord (QD). Numerical results obtained in the quantum chaos regime and in the integrable regime of spin-1/2 chains are compared. The CC and QD between nearest-neighbor pairs of spins are calculated for all energy eigenstates. The results show that, depending on whether the system is in a chaotic or integrable regime, the distribution of CC and QD are markedly different. On the other hand, in the integrable regime, states with the largest CC and QD are found in the middle of the spectrum, in the chaotic regime, the states with the strongest correlations are found at low and high energies at the edges of spectrum. Finite-size effects are analyzed, and some of the results are discussed in the light of the eigenstate thermalization hypothesis.  相似文献   

8.
Two identical finite quantum systems prepared initially at different temperatures, isolated from the environment, and subsequently brought into contact are demonstrated to relax towards Gibbs-like quasiequilibrium states with a common temperature and small fluctuations around the time-averaged expectation values of generic observables. The temporal thermalization process proceeds via a chain of intermediate Gibbs-like states. We specify the conditions under which this scenario occurs and corroborate the quantum equilibration with two different models.  相似文献   

9.
We discuss thermalization of a test particle schematized as a harmonic oscillator and coupled to a Boltzmann heat bath of finite size and with a finite bandwidth for the frequencies of its particles. We find that complete thermalization only occurs when the test particle frequency is within a certain range of the bath particle frequencies, and for a certain range of mass ratios between the test particle and the bath particles. These results have implications for the study of classical and quantum behaviour of high-frequency nanomechanical resonators.  相似文献   

10.
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The nonthermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early Universe after inflation and the question of fast thermalization in heavy-ion collision experiments.  相似文献   

11.
We study the transition to chaos and the emergence of statistical relaxation in isolated dynamical quantum systems of interacting particles. Our approach is based on the concept of delocalization of the eigenstates in the energy shell, controlled by the Gaussian form of the strength function. We show that, although the fluctuations of the energy levels in integrable and nonintegrable systems are different, the global properties of the eigenstates are quite similar, provided the interaction between particles exceeds some critical value. In this case, the statistical relaxation of the systems is comparable, irrespective of whether or not they are integrable. The numerical data for the quench dynamics manifest excellent agreement with analytical predictions of the theory developed for systems of two-body interactions with a completely random character.  相似文献   

12.
If and how an isolated quantum system thermalizes despite its unitary time evolution is a long‐standing, open problem of many‐body physics. The eigenstate thermalization hypothesis (ETH) postulates that thermalization happens at the level of individual eigenstates of a system's Hamiltonian. However, the ETH requires stringent conditions to be validated, and it does not address how the thermal state is reached dynamically from an initial non‐equilibrium state. We consider a Bose‐Einstein condensate (BEC) trapped in a double‐well potential with an initial population imbalance. We find that the system thermalizes although the initial conditions violate the ETH requirements. We identify three dynamical regimes. After an initial regime of undamped Josephson oscillations, the subsystem of incoherent excitations or quasiparticles (QP) becomes strongly coupled to the BEC subsystem by means of a dynamically generated, parametric resonance. When the energy stored in the QP system reaches its maximum, the number of QPs becomes effectively constant, and the system enters a quasi‐hydrodynamic regime where the two subsystems are weakly coupled. In this final regime the BEC acts as a grand‐canonical heat reservoir for the QP system (and vice versa), resulting in thermalization. We term this mechanism dynamical bath generation (DBG).  相似文献   

13.
We develop an exact nonperturbative framework to compute steady-state properties of quantum impurities subject to a finite bias. We show that the steady-state physics of these systems is captured by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation. Introducing a generalization of the equilibrium Bethe ansatz--the nonequilibrium Bethe ansatz--we explicitly construct the scattering eigenstates for the interacting resonance level model and derive exact, nonperturbative results for the steady-state properties of the system.  相似文献   

14.
对于自由粒子在有限容器中的能态密度,热力学统计教材一般根据半经典量子图像,由驻波条件和德布罗意关系,以动量分立值为基础出发得到;然而根据量子理论,无限深势阱中的粒子存在能量本征态,而非动量本征态.本文以能量本征态为统计对象推导了有限体积中的自由粒子的能态密度,结果与教材一致.但是我们的处理方式显得更为自然.  相似文献   

15.
We show numerically that a finite isolated cluster of interacting spins 1/2 exhibits a surprising nonthermal statistics when subjected to a series of small nonadiabatic perturbations by an external magnetic field. The resulting occupations of energy eigenstates are significantly higher than the thermal ones on both the low and the high ends of the energy spectra. This behavior semiquantitatively agrees with the statistics predicted for the so-called "quantum microcanonical" ensemble, which includes all possible quantum superpositions with a given energy expectation value. Our findings also indicate that the eigenstates of the perturbation operators are generically localized in the energy basis of the unperturbed Hamiltonian. This kind of localization possibly protects the thermal behavior in the macroscopic limit.  相似文献   

16.
《Physics Reports》2001,347(3):223-288
Universal properties of simple quantum systems whose classical counter parts are chaotic, are modeled by the classical random matrix ensembles and their interpolations/deformations. However for finite interacting many-particle systems such as atoms, molecules, nuclei and mesoscopic systems (atomic clusters, helium droplets, quantum dots, etc.) for wider range of phenomena, it is essential to include information such as particle number, number of single-particle orbits, lower particle rank of the interaction, etc. These considerations led to resurgence of interest in investigating in detail the so-called embedded random matrix ensembles and their various deformed versions. Besides giving a overview of the basic results of embedded ensembles for the smoothed state densities and transition matrix elements, recent progress in investigating these ensembles with various deformations, for deriving a statistical mechanics (with relationships between quantum chaos, thermalization, phase transitions and Fock space localization, etc.) for isolated finite systems with few particles is briefly discussed. These results constitute new progress in deriving a basis for statistical spectroscopy (introduced and applied in nuclear structure physics and more recently in atomic physics) and its domains of applicability.  相似文献   

17.
We present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization.  相似文献   

18.
We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.  相似文献   

19.
An isolated quantum many-body system in an initial pure state will come to thermal equilibrium if it satisfies the eigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been proposed. We first show that von Neumann's quantum ergodic theorem relies on an assumption that is essentially equivalent to ETH. We also investigate whether, following a sudden quench, special classes of pure states can lead to thermal behavior in systems that do not obey ETH, namely, integrable systems. We find examples of this, but only for initial states that obeyed ETH before the quench.  相似文献   

20.
吴飙  刘杰 《物理》2005,34(12):883-886
在绝热演化中的几何相位(即Berry相位)被推广到包括非本征态的一般量子态.这个新的几何相位同时适用于线性量子系统和非线性量子系统.它对于后者尤其重要因为非线性量子系统的绝热演化不能通过本征态的线性叠加来描述.在线性量子系统中,新定义的几何相位是各个本征态Berry相位的权重平均.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号