首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We introduce a new class of exchange-correlation potentials for a static and time-dependent density-functional theory of strongly correlated systems in 3D. The potentials are obtained via dynamical mean-field theory and, for strong enough interactions, exhibit a discontinuity at half-filling density, a signature of the Mott transition. For time-dependent perturbations, the dynamics is described in the adiabatic local density approximation. Results from the new scheme compare very favorably to exact ones in clusters. As an application, we study Bloch oscillations in the 3D Hubbard model.  相似文献   

2.
3.
A multicomponent density-functional theory is developed for the combined system of electrons and nuclei. We construct approximate functionals for the electron-nuclear correlation energy and illustrate the theory by explicit calculations for the H+2 molecular ion.  相似文献   

4.
The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are competitive with leading quantum chemical approaches at intermediate and large interatomic distances as well as good approximations to the excitation spectrum.  相似文献   

5.
Analytical results have been obtained in the framework of the generalized mean-field theory for diluted semiconductors with RKKY interaction. That theory accounts for the non-equivalency of different lattice sites by introducing the distribution function of local effective magnetic fields for non-regular (random) systems with magnetic interaction. The procedure is described that permits to deduce the analytical expression for that function. Corresponding improvement of the traditional mean-field theory could be observed by comparing results of such a generalized analytical model with exact results known for some simple cases, with numerical results of different authors considering the disorder of magnetic impurities’ arrangement, and with experimental data, as well.  相似文献   

6.
7.
We report results of variational calculations of 3H, 3He, 4He and nuclear matter with the Urbana v14 two-nucleon interaction and realistic models of the three-nucleon interaction (TNI). These include the Tucson and isobar intermediate-state models of the two-pion exchange TNI. The latter is also studied with an intermediate-range three-nucleon repulsion. In general, realistic TNI helps to bring the theory closer to experiment by giving extra binding energy to the A = 3 and 4 nuclei and providing extra saturation to the nuclear matter binding energy. The Coulomb energy of 3He and the rms radii of A = 3, 4 nuclei are also well described. However, some problems remain unresolved. There is a slight overbinding of 4He, an underbinding of nuclear matter, and the charge form factors of 3He and 4He, calculated with impulse approximation, deviate from the experimental at q2>5 fm?2.  相似文献   

8.
The many-body formalism for dynamical mean-field theory is extended to treat nonequilibrium problems. We illustrate how the formalism works by examining the transient decay of the oscillating current that is driven by a large electric field turned on at time t=0. We show how the Bloch oscillations are quenched by the electron-electron interactions, and how their character changes dramatically for a Mott insulator.  相似文献   

9.
A spin-current density-functional theory (SCDFT) is introduced, which takes into account the currents of the spin density and thus currents of the magnetization in addition to the electron density, the noncollinear spin density, and the density current, which are considered in standard current-spin-density-functional theory. An exact-exchange Kohn-Sham formalism based on SCDFT is presented, which represents a general framework for the treatment of magnetic and spin properties. As an illustration, an oxygen atom in a magnetic field is treated with the new approach.  相似文献   

10.
Unified approach for molecular dynamics and density-functional theory   总被引:3,自引:0,他引:3  
  相似文献   

11.
12.
13.
An approximate solution to the time-dependent density-functional theory response equations for finite systems is developed, yielding corrections to the single-pole approximation. These explain why allowed Kohn-Sham transition frequencies and oscillator strengths are usually good approximations to the true values, and why sometimes they are not. The approximation yields simple expressions for G?rling-Levy perturbation theory results, and a method for estimating expectation values of the unknown exchange-correlation kernel.  相似文献   

14.
15.
Motivated by impurity-induced magnetic ordering phenomena in spin-gap materials like TlCuCl3, we develop a mean-field theory for strongly disordered antiferromagnets, designed to capture the broad distribution of coupling constants in the effective model for the impurity degrees of freedom. Based on our results, we argue that in the presence of random magnetic couplings the conventional first-order spin-flop transition of an anisotropic antiferromagnet is split into two transitions at low temperatures, associated with separate order parameters along and perpendicular to the field axis. We demonstrate the existence of either a bicritcal point or a critical endpoint in the temperature–field phase diagram, with the consequence that signatures of the spin flop are more pronounced at elevated temperature.  相似文献   

16.
17.
18.
Nuclear matter properties are calculated in the relativistic mean-field theory by using a number of different parameter sets. The result shows that the volume energy a1 and the symmetry energy J are around the acceptable values 16MeV and 30MeV, respectively; the incompressibility K0 is unacceptably high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry L is around 100MeV for most parameter sets, and the symmetry incompressibility K s has positive sign which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there exists a critical point (,), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero, falling into ranges 0.014fm^-3 < < 0.039fm^-3 and 0.74 < ≤0.95; for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound. The maximum mass M NS of neutron stars is predicted in the range 2.45M ?M NS? 3.26M , the corresponding neutron star radius R NS is in the range 12.2km ?R NS? 15.1km. Received: 5 May 2000 / Accepted: 28 November 2000  相似文献   

19.
20.
We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities such as binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude for different systems in good agreement with existing experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号