首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on the magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with theoretical expectations. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that, for energies in a gap of the lattice band structure, the molecules cannot dissociate.  相似文献   

2.
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperature, resulting in spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization of charge carriers. Interesting transport and dielectric properties are found as the consequences, including large doping-dependent thermopower and dielectric constant, low-temperature variable-range-hopping resistivity, as well as high-temperature strange-metal-like resistivity, which are consistent with experimental measurements in the high-Tc cuprates. Disorder and impurities only play a minor and assistant role here.  相似文献   

3.
This paper presents numerical studies of the single hole model that address the interplay between the kinetic energy of itinerant electrons and the exchange energy of local moments as of interest to doped Mott insulators. Due to this interplay, two different spin correlations coexist around a mobile vacancy. These local correlations provide an effective two-band picture that explains the two-band structure observed in various theoretical and experimental studies, the doping dependence of the momentum space anisotropic pseudogap phenomena and the asymmetry between hole and electron doped cuprates.  相似文献   

4.
We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.  相似文献   

5.
Time-dependent nonequilibrium properties of a strongly correlated electron system driven by large electric fields is obtained by means of solving the time-dependent Schr?dinger equation for the many-body wave function numerically in one dimension. While the insulator-to-metal transition depends on the electric field and the interaction, the metallization is found to be described in terms of a universal Landau-Zener quantum tunneling among the many-body levels. These processes induce current oscillation for small systems, while giving rise to finite resistivity through dissipation for larger systems/on longer time scales.  相似文献   

6.
We use exact diagonalization combined with mean-field theory to investigate the phase diagram of the spin-orbital model for cubic vanadates. The spin-orbit coupling competes with Hund's exchange and triggers a novel phase, with the ordering of t(2g) orbital magnetic moments stabilized by the tilting of VO6 octahedra. It explains qualitatively spin canting and reduction of magnetization observed in YVO3. At finite temperature, an orbital instability in the C-type antiferromagnetic phase induces modulation of magnetic exchange constants even in the absence of lattice distortions. The calculated spin structure factor shows a magnon splitting at q-->=(0,0,pi / 2) due to the orbital dimerization.  相似文献   

7.
We have investigated the Mott transition in a quasi-two-dimensional Mott insulator EtMe{3}P[Pd(dmit){2}]{2} with a spin-frustrated triangular-lattice in hydrostatic pressure and magnetic-field [Et and Me denote C2H5 and CH3, respectively, and Pd(dmit){2} (dmit=1,3-dithiole-2-thione-4,5-dithiolate,dithiolate) is an electron-acceptor molecule]. In the pressure-temperature (P-T) phase diagram, a valence-bond solid phase is found to neighbor the superconductor and metal phases at low temperatures. The profile of the phase diagram is common to those of Mott insulators with antiferromagnetic order. In contrast to the antiferromagnetic Mott insulators, the resistivity in the metallic phase exhibits anomalous temperature dependence, rho=rho{0}+AT(2.5).  相似文献   

8.
We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle-hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible kinks are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott insulator.  相似文献   

9.
We argue that a normal Fermi liquid and a singlet, spin-gapped Mott insulator cannot be continuously connected, and that some intermediate phase must intrude between them. By explicitly working out a case study where the singlet insulator is stabilized by orbital degeneracy and an inverted Hund's rule coupling, mimicking a Jahn-Teller effect, we find that the intermediate phase is a superconductor.  相似文献   

10.
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.  相似文献   

11.
12.
We show that, with increasing randomness, the spectral gap in a 2D Mott-Hubbard insulator is destroyed first at a disorder V(c1), while antiferromagnetism persists up to a higher V(c2). Most unexpectedly, between V(c1) and V(c2) the system is metallic and is sandwiched between the Mott insulator below V(c1) and the Anderson insulator above V(c2). The metal is formed when the spectral gap gets destroyed locally in regions where the disorder potential is high enough to overcome the interelectron repulsion. This generates puddles with enhanced charge fluctuations that percolate with increasing disorder, resulting in a spatially inhomogeneous metallic phase.  相似文献   

13.
Using a combination of exact enumeration and the dynamical mean-field theory (DMFT) we study the drastic change of the spectral properties, obtained in the half-filled two-dimensional Hubbard model at a transition from an antiferromagnetic to a paramagnetic Mott insulator, and compare it with the results obtained using the quantum Monte Carlo method. The coherent hole (electron) quasiparticle spin-polaron subbands are gradually smeared out when the AF order disappears, either for increasing Coulomb repulsion U at fixed temperature T, or for increasing T at fixed U. Within the DMFT we present numerical evidence (a continuous disappearence of the order parameter) suggesting that the above magnetic transition is second order both in two and in three dimensions.Received: 20 November 2004, Published online: 9 April 2004PACS: 71.30. + h Metal-insulator transitions and other electronic transitions - 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 79.60.-i Photoemission and photoelectron spectraThis work is dedicated to Professor Ole Krogh Andersen on the occasion of his 60th birthday.  相似文献   

14.
15.
We inspect the fundamental difference between the correlated band insulators (BI) and the Mott insulators (MI) from the perspective of the dynamical pair excitations. To this end, we investigated the physics of the two-plane Hubbard model by employing the well-tested dynamical mean field theory (DMFT) together with the quantum Monte Carlo (QMC) method. At half-filling our results clearly indicate that while the spectral weight of the pair excitation becomes minimal at MI which corresponds to a diminishing of the double occupancy, the opposite occurs at BI. We then discuss the effect of doping and find that the correlated band insulator and the Mott insulator robust at low doping concentration and the metallic state emerges at larger doping. The pair spectral function demonstrates that the metallic state of doped MI is strongly different from that of doped BI and it is readily reflected in the lineshape of the spectra. We discuss the implication of our results in the context of the two-particle spectroscopy.  相似文献   

16.
We propose the creation of a molecular Bose-Einstein condensate by loading an atomic condensate into an optical lattice and driving it into a Mott insulator with exactly two atoms per site. Molecules in a Mott insulator state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the Mott insulator is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.  相似文献   

17.
We propose the projected BCS wave function as the ground state for the doped Mott insulator SrCu2(BO3)2 on the Shastry-Sutherland lattice. At half filling this wave function yields the exact ground state. Adding mobile charge carriers, we find a strong asymmetry between electron and hole doping. Upon electron doping an unusual metal with strong valence bond correlations forms. Hole doped systems are d-wave resonating valence bond superconductors in which superconductivity is strongly enhanced by the emergence of spatially varying plaquette bond order.  相似文献   

18.
A microscopic theory is presented for the local moment formation near a nonmagnetic impurity or a copper defect in high-Tc superconductors. We use a renormalized mean-field theory of the t-J model for a doped Mott insulator and study the fully self-consistent, spatially unrestricted solutions of the d-wave superconducting (SC) state in both the spin S=0 and S=1/2 sectors. We find a transition from the singlet d-wave SC state to a spin doublet SC state when the renormalized exchange coupling exceeds a doping dependent critical value. The induced S=1/2 moment is staggered and localized around the impurity. It arises from the binding of an S=1/2 nodal quasiparticle to the impurity. The local density of states is calculated and connections to NMR and STM experiments are discussed.  相似文献   

19.
Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d1 ferromagnetic Mott insulator with an ordered moment of approximately 0.2microB per formula unit and TC=6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet ground state anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.  相似文献   

20.
We study real-time dynamics of a charge carrier introduced into an undoped Mott insulator propagating under a constant electric field F on the t-J ladder and a square lattice. We calculate the quasistationary current. In both systems an adiabatic regime is observed followed by a positive differential resistivity (PDR) at moderate fields where the carrier mobility is determined. Quantitative differences between the ladder and two-dimensional (2D) systems emerge when at large fields both systems enter the negative differential resistivity (NDR) regime. In the ladder system Bloch-like oscillations prevail, while in two dimensions the current remains finite, proportional to 1/F. The crossover between the PDR and NDR in two dimensions is accompanied by a change of the spatial structure of the propagating spin polaron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号