首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlated electron systems are among the centerpieces of modern condensed matter sciences, where many interesting physical phenomena, such as metal-insulator transition and high-T c superconductivity appear. Recent efforts have been focused on electrostatic doping of such materials to probe the underlying physics without introducing disorder as well as to build field-effect transistors that may complement conventional semiconductor metal-oxide-semiconductor field effect transistor (MOSFET) technology. This review focuses on metal-insulator transition mechanisms in correlated electron materials and three-terminal field effect devices utilizing such correlated oxides as the channel layer. We first describe how electron-disorder interaction, electron-phonon interaction, and/or electron correlation in solids could modify the electronic properties of materials and lead to metal-insulator transitions. Then we analyze experimental efforts toward utilizing these transitions in field effect transistors and their underlying principles. It is pointed out that correlated electron systems show promise among these various materials displaying phase transitions for logic technologies. Furthermore, novel phenomena emerging from electronic correlation could enable new functionalities in field effect devices. We then briefly review unconventional electrostatic gating techniques, such as ionic liquid gating and ferroelectric gating, which enables ultra large carrier accumulation density in the correlated materials which could in turn lead to phase transitions. The review concludes with a brief discussion on the prospects and suggestions for future research directions in correlated oxide electronics for information processing.  相似文献   

2.
Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanorib- bon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green's Function (NEGF) method and experimental inputs, we predict that the cooling kW/cm2, on par with the best known techniques power of such a device can approach the order of using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.  相似文献   

3.
It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interaction combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydrogenated or fluorinated) graphene using electron-beam lithography. We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon.  相似文献   

4.
Ferroelectric field-effect transistors using ZnO:Li films simultaneously as a transistor channel and as a ferroelectric active element have been prepared and studied. We show an opportunity of using the ferroelectric field-effect transistor based on ZnO:Li films in ZnO:Li/LaB6 heterostructure as a bistable memory element for information recording. The proposed structure of a ferroelectric memory cell does not possess the fatigue under repeated readout of single recorded information that will allow increasing the resource of storage devices essentially.  相似文献   

5.
6.
By using an electrochemical gating technique with a new combination of polymer and electrolyte, we were able to inject surface charge densities n(2D) as high as 3.5×10(15) e/cm(2) in gold films and to observe large relative variations in the film resistance, ΔR/R', up to 10% at low temperature. ΔR/R' is a linear function of n(2D)-as expected within a free-electron model-if the film is thick enough (≥25 nm); otherwise, a tendency to saturation due to size effects is observed. The application of this technique to 2D materials might allow extending the field-effect experiments to a range of charge doping where large conductance modulations and, in some cases, even the occurrence of superconductivity are expected.  相似文献   

7.
《Current Applied Physics》2014,14(8):1045-1050
In this study, we tried to reduce the organic contamination of graphene. This organic contamination most likely occurs during the graphene transfer and lithography steps, which in turn degrades the quality of the graphene. Inorganic Au film was applied for Au-assisted transfer instead of the conventional thin poly(methyl methacrylate), and a new fabrication process using the Au-film for the transfer and masking layer was designed in order to minimize the contamination of graphene from organic residues. As a result, we demonstrated that the overall qualities of the transferred graphene film and graphene transistors have been highly improved. These improvements include an enhancement of mobility, and a decrease of defects, unintentional doping, contact resistance, and sheet resistance.  相似文献   

8.
The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator–ferromagnet transition by tuning an external electric field.  相似文献   

9.
《Current Applied Physics》2014,14(8):1057-1062
Power amplifier circuits are implemented with graphene field-effect transistors (FETs), capacitors and inductors, and their gain is improved step-by-step by adjusting the passive components. The transistors are fabricated on a 150-mm wafer using conventional complementary-metal-oxide semiconductor processing along with graphene transferring processes. The completed circuit is implemented on a printed circuit board, which allows for adjustment of the external capacitance and inductance to study the performance of graphene RF FETs. A maximum signal gain of 1.3 dB is achieved at 380 MHz. The device parameters of the transistors are then extracted and the gain is analyzed, and the results show that lowering the source–drain conductance and gate resistance is the key in realizing high performance circuits.  相似文献   

10.
A pathway to open the band gap of graphene by p-n codoping is presented according to the first principles study. Two models are used: Lithium adsorbed on Boron-doped graphene (BG) and Boron-Nitrogen (B/N) codoping into graphene. The stability of Lithium adsorbed on BG is firstly analyzed, showing that the hollow site is the most stable configuration, and there is no energy barrier from some metastable configurations to a stable one. After the p-n codoping, the electronic structures of graphene are modulated to open a band gap with width from 0.0 eV to 0.49 eV, depending on the codoping configurations. The intrinsic physical mechanism responsible for the gap opening is the combination of the Boron atom acting as hole doping and Nitrogen (Lithium) as electron doping.  相似文献   

11.
《应用光谱学评论》2012,47(10):803-828
ABSTRACT

Molecular transistors have been extensively investigated as the building blocks for the ultimate miniaturization of electronic devices. They are assembled from single molecules and molecular monolayers serving as a current-carrying channel in a conventional field-effect transistor configuration, in which gate electrodes have been electrically or electrochemically implemented in several types of test beds such as electromigration junctions, mechanically controllable break junctions, and devices with carbon-based electrodes. The energy level alignments of the component molecules incorporated into the transistor can be tuned using molecular orbital gating and it can ultimately control the flow of charge carriers. Herein, we review recent progress in studying spectroscopic characterization techniques and charge transport properties of molecular transistors.  相似文献   

12.
In this paper, we investigate theoretically the electron transport in AlGaN/GaN single-barrier and in AlGaN/GaN/AlGaN double-barrier heterostructures, aimed to operate as high-power and high-temperature field-effect transistors. The presence of spontaneous and piezoelectric polarizations as well as the heterointerface polarity are evoked and taken into account in the modelling part. Delta-doping is used as a source of electrons for the channel quantum well. Calculations of the electron-band parameters are made by using self-consistent solutions of coupled Schrodinger-Poisson equations. It is found that the polarization fields act to significantly increase the two-dimensional sheet charge concentration. Moreover, the AlGaN/GaN heterostructures with higher Al compositions are found to be favourable for higher electron densities. On the other hand, the employment of a back doping with delta-shaped profiles is shown to improve further the electrical behaviour of the field-effect transistors studied.  相似文献   

13.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   

14.
Plasma treatment is a powerful tool to tune the properties of two-dimensional materials. Previous studies have utilized various plasma treatments on two-dimensional materials. We find a new effect of plasma treatment. After controlled oxygen-plasma treatment on field-effect transistors based on two-dimensional SnSe_2, the capacitive coupling between the silicon back gate and the channel through the 300 nm SiO_2 dielectric can be dramatically enhanced by about two orders of magnitude(from 11 n F/cm~2 to 880 nF/cm~2), reaching good efficiency of ionliquid gating. At the same time, plasma treated devices show large hysteresis in the gate sweep demonstrating memory behavior. We reveal that this spontaneous ion gating and hysteresis are achieved with the assistance of a thin layer of water film automatically formed on the sample surface with water molecules from the ambient air, due to the change in hydrophilicity of the plasma treated samples. The water film acts as the ion liquid to couple the back gate and the channel. Thanks to the rich carrier dynamics in plasma-treated two-dimensional transistors, synaptic functions are realized to demonstrate short-and long-term memories in a single device. This work provides a new perspective on the effects of plasma treatment and a facile route for realizing neuromorphic devices.  相似文献   

15.
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.  相似文献   

16.
We have investigated transport characteristics of epitaxial graphene grown on semi-insulating silicon-face 4H-silicon carbide (SiC) substrate by thermal decomposition method in relatively high N2 pressure atmosphere. We have succeeded in forming 1–2 layers of graphene on SiC in controlled manner. The surface morphology of formed graphene was analyzed by atomic force microscopy (AFM), low-energy electron diffraction (LEED) and low-energy electron microscope (LEEM). We have confirmed single-layer graphene growth in average by this method. Top-gated, single-layer graphene field-effect transistors (FETs) were fabricated on epitaxial graphene grown on 4H-SiC. Increased on/off ratio of nearly 100 at low temperature and extremely small minimum conductance (0.018–0.3 in 4 e2/h) in gated Hall-bar samples suggest possible band-gap opening of single-layer epitaxial graphene grown on Si-face SiC.  相似文献   

17.
For the first time, we have presented a novel nanoscale fully depleted silicon-on-insulator metal-oxide-semiconductor field-effect transistor (SOI-MOSFET) with modified current mechanism for leakage current reduction. The key idea in this work is to suppress the leakage current by injected carriers decrement into the channel from the source in weak inversion regime while we have created a built-in electric field in the channel for improving the on current of device. Therefore, we have introduced a trapezoidal doping that distributed vertically in the channel and called the proposed structure as vertical trapezoid doping fully depleted silicon-on-insulator MOSFET (VTD-SOI). Using two-dimensional two-carrier simulation we demonstrate that the VTD-SOI decreases the leakage current in comparison with conventional uniform doping fully depleted silicon-on-insulator MOSFET (C-SOI). Also, our results show short channel effects (SCEs) such as drain induced barrier lowering (DIBL) and threshold voltage roll-off improvement in the proposed structure. Therefore, the VTD-SOI structure shows excellent performance for scaled transistors in comparison with the C-SOI and can be a good candidate for CMOS low power circuits.  相似文献   

18.
We study the current through conjugated aromatic molecular transistors modulated by a transverse field. The selfconsistent calculation is realized with density function theory through the standard quantum chemistry software Gaussian03 and the non-equilibrium Green's function formalism. The calculated I - V curves controlled by the transverse field present the characteristics of different organic molecular transistors, the transverse field effect of which is improved by the substitutions of nitrogen atoms or fluorine atoms. On the other hand, the asymmetry of molecular configurations to the axis connecting two sulfur atoms is in favor of realizing the transverse field modulation. Suitably designed conjugated aromatic molecular transistors possess different I - V characteristics, some of them are similar to those of metal-oxide-semiconductor field-effect transistors (MOSFET). Some of the calculated molecular devices may work as elements in graphene electronics. Our results present the richness and flexibility of molecular transistors, which describe the colorful prospect of next generation devices.  相似文献   

19.
The physics of impurities in Type-II staggered superlattices is reviewed, with emphasis on changes of doping character, such as shallow to deep and deep to false-valence transitions, that can result from altering layer thicknesses. It is shown how some impurities can change their doping characters from "deep acceptors" (semi-insulating) to shallow donors (n-type) as functions of layer thicknesses in superlattices such as InAs/AℓSb. A particularly important case is an AℓSb antisite defect in an AℓSb layer of an InAs/AℓSb superlattice. This defect is a deep trap or "deep acceptor" in AℓSb, and a remote donor in some superlattices, depending on the layer thicknesses. It can, by itself, control the electron gas density in a superlattice structure, and so can play an important role in the development of high-speed field-effect transistors.  相似文献   

20.
Graphene–oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene–oxide hybrid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号