首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large eddy simulation of natural convection in a confined square cavity is described. The use of a complex compressible code with an artificial acoustic stiffness correction method, allows the use of higher time steps for a faster time and statistical convergence. We consider a broadly studied experimental case, consisting of a natural convective flow in a confined square cavity, with vertical walls heated at different rates (active walls), set at Ra = 1.58 × 109. Turbulent boundary layers developing on the active walls and a vertical stable stratification characterize the mean flow. It is shown here that the results of this study match the experimental results reported in literature; for instance, mean velocity results. Although results for rms velocity fluctuations are barely over-predicted, the peak region is properly represented, while the greatest disagreements are found in the turbulent heat flow rate (velocity–temperature correlations). Turbulent structures were identified using different visualization methods and statistical studies. The authors found that the boundary layers on the active walls almost reach the fully turbulent regime, tending toward the laminar regime along the horizontal walls.  相似文献   

2.
Flow and heat transfer characteristics over flat, concave and convex surfaces have been investigated in a low speed wind tunnel in the presence of adverse and favourable pressure gradients (k), for a range of –3.6 × 10–6 ≤ k ≤ +3.6 × 10–6. The laminar near zero pressure gradient flow, with an initial momentum thickness Reynolds number of 200, showed that concave wall boundary layer was thinner and heat transfer coefficients were almost 2 fold of flat plate values. Whereas for the same flow condition, thicker boundary layer and 35% less heat transfer coefficients of the convex wall were recorded with an earlier transition. Accelerating laminar flows caused also thinner boundary layers and an augmentation in heat transfer values by 28%, 35% and 16% for the flat, concave and convex walls at k = 3.6 × 10–6. On the other hand decelerating laminar flows increased the boundary layer thickness and reduced Stanton numbers by 31%, 26% and 22% on the flat surface, concave and convex walls respectively. Turbulent flow measurements at k = 0, with an initial momentum thickness Reynolds number of 1100, resulted in 30% higher and 25% lower Stanton numbers on concave and convex walls, comparing to flat plate values. Moreover the accelerating turbulent flow of k = 0.6 × 10–6 brought about 29%, 30% and 24% higher Stanton numbers for the flat, concave and convex walls and the decelerating turbulent flow of k = –0.6 × 10–6 caused St to decrease up to 27%, 25% and 29% for the same surfaces respectively comparing to zero pressure gradient values. An empirical equation was also developed and successfully applied, for the estimation of Stanton number under the influence of pressure gradients, with an accuracy of better than 4%.  相似文献   

3.
The fully developed turbulent flows over wavy boundaries are investigated by means of thek-ε model. Predicted flow characteristics over rigid wavy walls are in good agreement with the vailable experimental data. Moreover drag reduction has been found in a 2-dimensional channel with periodical wavy walls. The energy input from turbulent wind to regular waves is also studied in the paper by the same turbulence model with carefully posed boundary conditions at wind-wave interface. Better agreement has been obtained in the predication of the growth rates of wind waves as compared with the previous theoretical and numerical results. The project supported by the National Natural Science Foundation of China.  相似文献   

4.
Heat transfer to laminar flow in tapered passages is studied for two types of thermal boundary conditions: prescribed heat flux on both walls, and on one wall with the other wall adiabatic. In the analysis, the flow is assumed to be purely radial. Temperature distributions and Nusselt number are obtained for the heat flux qrδ. The Nusselt number depends on Reynolds number and taper angle. The fully developed Nusselt number decreases with increase in δ for converging flow and increases for diverging flow. Constant heat flux boundary conditions, δ = 0, for converging flow yield a reduction in Nusselt number when compared with the case of parallel channel flow.  相似文献   

5.
Buoyancy-driven convection within a cavity, whose sidewalls are heated and cooled, is a problem of great interest, because it has applications in heat transfer and mixing. Most studies to date have studied one of two cases: the steady-state case or the development of the transient flow as it approaches steady state. Our main concern was to study the response of the cavity to time-varying thermal boundary conditions. We therefore decided to observe the flow phenomena within a convection cavity under sinusoidal thermal forcing of the sidewalls. To map the flow properly, it is necessary to have simultaneous kinematic and thermal information. Therefore, the digital particle image thermometry and velocimetry (DPITV) is used to acquire data. Implementing this technique requires seeding the flow with encapsulated liquid crystal particles and illuminating a cross section of the flow with a sheet of white light. Extraction of the thermal and kinematic content is in two parts. For the first, the liquid crystals will reflect different colors of the visible spectrum, depending on the temperatures to which they are subjected. Therefore, calibrating their color reflection with temperature allows for the extraction of the thermal content. For the second part, the kinematic information is obtained through the use of a digital cross-correlation particle image velocimetry technique. With the use of DPITV, the flow within a convection cavity is mapped and studied under steady forcing and sinusoidally forced boundary conditions at the Brunt-Väisälä frequency. For the sinusoidally forced case, three cases are studied. In the first, the heating between the two walls is in phase. In the second, the heating between the two walls is 180° out of phase. In the third, the heating between the two walls is 90° out of phase. For steady forcing, the thermal plots show that the flow develops a linearly stratified profile within the center of the cell. At the sidewalls, however, owing to forcing, hot/cold thermal boundary layers develop at the left/right walls. These hot/cold thermal boundary layers then turn around the upper-left/lower-right corners and develop into intrusion layers that extend across the top and bottom walls. The vorticity and streamlines show that the bulk of the fluid motion is concentrated around the walls, whereas the fluid within the center of the cell remains stationary. For the sinusoidally forced cases, the thermal plots show the existence of many thermal “islands,” or pockets of fluid where the temperature is different with respect to its surroundings. The vorticity plots show that the center of the cell is mostly devoid of vorticity and that the vorticity is mainly confined to the sidewalls, with some vorticity at the top and bottom walls. For the 0° forcing, the streamlines show the development of two counterrotating rollers. For the 180° forcing, the streamlines show the development of only one roller. Finally, for the 90° forcing, the streamlines show the development of both a two-roller and a one-roller system, depending on the position within the forcing cycle.  相似文献   

6.
In the present study, the two-dimensional (2-D) stability properties of the vertical boundary layers in a cavity that is differentially heated over two opposing vertical walls is considered. The study is performed by introducing artificial, controlled perturbations at the base of the vertical boundary layer along the hot cavity wall and by following the evolution of these disturbances. For small initial perturbations, the evolution is governed by linear effects. This method accurately predicts the frequency of the bifurcation, which occurs for (much) larger Rayleigh numbers. Convective instability sets in for Rayleigh numbers much smaller than those at which the absolute instability (i.e., the bifurcation) occurs, and these Rayleigh numbers are in reasonable agreement with those for the boundary layer along a plate. The absolute instability does not result from the first wave which becomes unstable. For small Prandtl numbers (≤ 2), the unstable waves which lead to the absolute instability are shear-driven, and a single frequency is introduced in the flow after the bifurcation. For larger Prandtl numbers, the unstable waves are buoyancy driven and no single-frequency unsteady flow is observed after the bifurcation.  相似文献   

7.
8.
The transition of the thermal boundary layer from start-up to a quasi-steady state in a side-heated cavity is observed using a shadowgraph technique. Three stages of the transition, including an initial growth stage, an entrainment development stage and a quasi-steady stage, are demonstrated. A significant feature of the transition revealed from the present flow visualisation is the formation of a double-layer structure along the sidewall at the entrainment development stage. It is believed that the reverse flow in the double-layer structure is the likely cause responsible for the unstable travelling waves at the quasi-steady state.  相似文献   

9.
    
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

10.
This paper presents the results of experimental and numerical investigations of the problem of turbulent natural convection in a converging-plate vertical channel. The channel has two isothermally heated inclined walls and two adiabatic vertical side walls. The parameters involved in this study are the channel geometry represented by the channel width at exit, the inclination of the heated walls and the temperature difference between the heated walls and the ambient. The investigation covered modified Rayleigh numbers up to 108 in the computational study and up to 9.3 × 106 in the experimental work. The experimental measurements focused on the velocity field and were carried out using a PIV system and included measurements of the mean velocity profiles as well as the root-mean-square velocity and shear stress profiles. The experiments were conducted for an inclination angle of 30°, a gap width of 10 mm and two temperature differences (∆T=25.4°C and 49.8°C). The velocity profiles in the lower part of the channel indicated the presence of two distinct layers. The first layer is adjacent to the heated plate and driven by buoyancy forces while the second layer extends from the point of maximum velocity to the channel center plane and driven mainly by shear forces. The velocity profile at the upper portion of the channel has shown the merging of the two boundary layers growing over the two heated walls. The measured values of the Reynolds shear stress and root mean square of the horizontal and vertical velocity fluctuation components have reached their maximum near the wall while having smaller values in the core region. The computational results have shown that the average Nusselt number increases approximately linearly with the increase of the modified Rayleigh number when plotted on log–log scale. The variation of the local Nusselt number indicated infinite values at the channel inlet (leading edge effect) and high values at the channel exit (trailing edge effect). For a fixed value of the top channel opening, the increase of the inclination angle tended to reduce flow velocity at the inlet section while changing the flow structure near the heated plates in such a way to create boundary-layer type flow. The maximum value of the average Nusselt number occurs when θ = 0 and decreases with the increase of the inclination angle. On the other hand, the increase of the channel width at exit for the same inclination angle caused a monotonic increase in the flow velocity at the channel inlet.  相似文献   

11.
In a recent publication Bühler (Heat Mass Transfer 39:631–638, 2003) reported new results for conduction regime flow between vertical differentially-heated walls that provide a continuum of solutions between capped and open ends. In this paper we extend Bühler’s work to realize a continuum of solutions of convection regime flow using empirical results for the vertical temperature gradient that develops in tall aspect ratio geometries. The mass flux is determined analytically for this three-parameter family of solutions. Identical viscous and thermal boundary layers exist at the opposing walls when the cavity is capped. However, as the flow evolves to one with open ends, there is an intensification (attenuation) of the boundary layers near the hot (cold) walls. In the limit corresponding to an open-ended cavity, the boundary layer at the cold wall vanishes altogether.  相似文献   

12.
This paper concentrates on the analysis of the thermal nonequilibrium effects during forced convection in a parallel-plate channel filled with a fluid saturated porous medium. The flow in a channel is described by the Brinkman-Forchheimer-extended Darcy equation and the thermal nonequilibrium effects are accounted for by utilizing the two energy equations model. Applying the perturbation technique, an analytical solution of the problem is obtained. It is established that the temperature difference between the fluid and solid phases for the steady fully developed flow is proportional to the ratio of the flow velocity to the mean velocity. This results in a local thermal equilibrium at the walls of the channel if the Brinkman term which allows for the no-slip boundary condition at the walls is included into the momentum equation.  相似文献   

13.
三维扰动波的非平行边界层稳定性研究   总被引:2,自引:0,他引:2  
夏浩  唐登斌  陆昌根 《力学学报》2002,34(5):688-695
导出了三维扰动波的原始变量形式的抛物化稳定性方程(PSE),研究了三维空间模态TS波的非平行边界层稳定性问题.采用了法向四阶紧致格式,以提高计算精度.通过给出不会导致奇性的坐标变换、修改外边界条件以及克服平行流初始值的瞬态影响和推进步长的限制,保证了计算的数值稳定.用补全元素带状矩阵法求解块三对角矩阵,大大提高了速度.计算结果清楚地显示了三维扰动波的演化过程和非平行性对边界层稳定性的影响,特别是,观察到非平行性对三维扰动波的影响,有时会使其稳定性出现逆转的现象.还研究了逆压梯度的作用.算例的结果与其他结果符合良好.  相似文献   

14.
In a previous paper[1], a method has been developed to study the stability characteristics of laminar boundary layers over compliant walls. In this paper, the effect of double layered compliant wall and Kramer type compliant wall on delaying the transition is investigated, and it is shown that there does exist the possibility to delay the transition by applying such compliant walls. The project supported by the National Natural Science Foundation of China.  相似文献   

15.
A quantitative thermometry technique, based on planar laser-induced fluorescence (PLIF), was applied to image temperature fields immediately next to walls in shock tube flows. Two types of near-wall flows were considered: the side wall thermal boundary layer behind an incident shock wave, and the end wall thermal layer behind a reflected shock wave. These thin layers are imaged with high spatial resolution (15μm/pixel) in conjunction with fused silica walls and near-UV bandpass filters to accurately measure fluorescence signal levels with minimal interferences from scatter and reflection at the wall surface. Nitrogen, hydrogen or argon gas were premixed with 1–12% toluene, the LIF tracer, and tested under various shock flow conditions. The measured pressures and temperatures ranged between 0.01 and 0.8 bar and 293 and 600 K, respectively. Temperature field measurements were found to be in good agreement with theoretical values calculated using 2-D laminar boundary layer and 1-D heat diffusion equations, respectively. In addition, PLIF images were taken at various time delays behind incident and reflected shock waves to observe the development of the side wall and end wall layers, respectively. The demonstrated diagnostic strategy can be used to accurately measure temperature to about 60 μm from the wall.  相似文献   

16.
The same methods used previously to study acoustic-mode instability in supersonic boundary layers are applied to free shear layers, and new calculations are made for boundary layers with cooling and suction. The objective is to obtain additional information about acoustic-mode instability, and to find what features of the instability are common to boundary layers and free shear flows. Acoustic modes exist whenever there is an embedded region of locally supersonic flow relative to the phase speed of the instability wave. Consequently, they can be found in boundary layers, wakes, and jets, but not in mixing layers unless the flow is confined. In this first part of a two-part paper, attention is directed principally to two-dimensional waves. The linear, inviscid stability theory is used to calculate spatial amplification rates at Mach number 3 for the sinuous and varicose modes of a single wake flow and a single jet flow, each made up of the same mixing-layer profile plus a central region of uniform flow. Along with sequences of sinuous and varicose unstable modes clearly identifiable as acoustic modes, both of these flows, unlike the boundary layer, have a lowest sinuous mode that is the most unstable. The unstable modes include both subsonic and radiating disturbances with large amplification rates. The latter phenomenon is also found for highly cooled boundary layers with suction. In these boundary layers, suction is generally stabilizing for nonradiating acoustic disturbances, but destabilizing for radiating disturbances.The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Support from the Aerodynamics Division of the Office of Aeronautics and Exploration Technology is gratefully acknowledged. A preliminary version of this paper was presented at the Fourth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, California State University, Long Beach, CA, 16–19 January 1989.  相似文献   

17.
An analysis has been carried out to determine the heat transfer characteristics for fully developed turbulent flow in concentric annular ducts with constant thermal boundary conditions of second kind. The energy equation has been solved analytically by separation of variables. Results for heat transfer in the thermal entrance region, in the thermal fully developed flow and thermal entrance-length results are presented over a wide range of Reynolds number (104?Re?106) and Prandtl-number (0?Pr?100) and compared to available empirical data.  相似文献   

18.
为了解具有密度极值流体瑞利-贝纳德对流特有现象和规律,利用有限容积法对长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流的分岔特性进行了三维数值模拟,得到了不同条件下的对流结构型态及其分岔序列,分析了密度极值特性、瑞利数、热边界条件以及宽深比对瑞利-贝纳德对流的影响. 结果表明:具有密度极值冷水瑞利-贝纳德对流系统较常规流体更加稳定,且流动型态及其分岔序列更加复杂;相同瑞利数下多种流型可以稳定共存,各流型在相互转变中存在滞后现象;随着宽深比的增加,流动更易失稳,对流传热能力增强;系统在导热侧壁时比绝热侧壁更加稳定,对流传热能力有所减弱;基于计算结果,采用线性回归方法,得到了热壁传热关联式.  相似文献   

19.
纳米示踪平面激光散射技术在激波复杂流场测量中的应用   总被引:2,自引:0,他引:2  
在激波以及激波边界层相互作用这类含激波的复杂流场中,流场结构具有明显的三维特征.研究这类流场,采用纹影、阴影和干涉等传统流动显示技术空间分辨率较低,难以分辨流场的三维特性.基于纳米示踪的平面激光散射技术(nano-tracer planar laser scattering,NPLS),是作者近年来开发的一种新的研究超声速流场的测试与显示技术,可对超声速复杂三维流场进行高时空分辨率流动显示与测量.NPLS技术的特点使其成为测量激波复杂流场的有力手段.近年来,作者以NPLS技术为主要手段,对航空航天领域典型的激波复杂流场进行了试验研究,包括超声速弹头绕流、超声速混合层、超声速边界层,以及激波边界层相互作用流场,显示出NPLS技术在激波复杂流场精细测试与流动显示中优势.本文简要介绍NPLS技术在激波复杂流场测量中应用的研究进展.   相似文献   

20.
In a fluid-saturated porous medium, dissolved species advect at the pore velocity, while thermal retardation causes heat to move at the Darcy velocity. The Darcy model with the Boussinesq approximation in a square medium with a porosity of = 0.01 subject to two sources of buoyancy is used, to study numerically the dynamics of this so-called double-advective instability. The vertical walls of the medium are impermeable and adiabatic, while Dirichlet boundary conditions are imposed on the horizontal walls such that the medium is heated and salted from below. For an increasing ratio between chemical and thermal buoyancy, while keeping the thermal buoyancy fixed, a transition from a steady to a chaotic convective solution is observed. At the transition a stable limit cycle is found, suggesting that the transition takes the form of a Hopf bifurcation. The dynamics of the chaotic flow is characterized by irregular transitions between nonlayered and layered flow patterns, as a result of the spontaneous formation and disappearance of gravitationally stable interfaces. These interfaces temporarily divide the domain in layers of distinct solute concentration and lead to a significant reduction of kinetic energy and vertical heat and solute fluxes. The stability of an interface is described by a balance between the viscous drag forces in the convective layers and the buoyancy force associated with the density interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号