首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical analysis of the accuracy of the volumetric method for the determination of liquid–liquid equilibrium was carried out. The results show that, under certain conditions, this method can be used to investigate systems showing relatively small mutual solubilities. Relations were derived to estimate standard deviations of the equilibrium compositions determined by the volumetric method.

In the experimental part of the work, an apparatus for measurements of mutual solubilities of liquids was constructed. A procedure that enabled us to determine precisely volumes of liquid phases was developed. This procedure and apparatus present the advantage that relatively small amounts of samples are required (approximately 2 × 20 ml). Theoretical conclusions concerning the applicability of the volumetric method were checked by measuring mutual solubilities at 303.15 K in systems methylcyclohexane + N,N-dimethylformamide, 1-butanol + water and dimethyl phthalate + water. Further, the method was used to measure systematically the liquid–liquid equilibrium in systems ethyl acetate + ethylene glycol and phenyl acetate + ethylene glycol at temperatures from 293 to 323 K. Data for these systems were acquired by means of other methods as well and a good agreement was observed on comparison.  相似文献   


2.
J. Ptek    J. Klomfar 《Fluid Phase Equilibria》2006,250(1-2):138-149
A set of empirical temperature-molar fraction expressions for solid–liquid equilibrium curves of LiBr–H2O and LiCl–H2O systems is presented. The expressions are based upon a body of experimental data that have been compiled and critically evaluated. The equations cover the full composition range for LiCl–H2O system and compositions up to the salt mole fraction of x = 0.46 (i.e. mass fraction of w=0.805) for LiBr–H2O, corresponding to transition from monohydrate to anhydrate. Temperatures and solution compositions at the eutectic point and at transition points between hydrates have been determined from intersections of the curves corresponding to the adjacent hydrate ranges of the phase diagram. Equations of a special structure were used, involving the coordinates of the transition points as parameters, which makes possible their direct non-linear optimization. To obtain more reliable results, a procedure was employed optimizing both the temperature–composition and composition–temperature equations simultaneously. The uncertainty in the obtained values of the transition point coordinates are estimated to be of the order of 1 K for temperature and 0.001 for the composition expressed in salt mole fraction. Gaps in the database are shown to give experimenters orientation for future research.  相似文献   

3.
Isothermal vapour–liquid equilibria (VLE), solid–liquid equilibria and excess enthalpies have been measured for the systems cyclohexanone + cyclohexanol and 2-octanone + 1-hexanol. Additionally in this paper binary azeotropic data at different pressures for 1-pentanol + 2-heptanone and 1-hexanol + 2-octanone have been determined with the help of a wire band column. Furthermore activity coefficients at infinite dilution for methanol, ethanol, 1-butanol and 1-propanol in 2-octanone at different temperatures have been measured with the help of the dilutor technique. These data together with literature data for alcohol–ketone systems were used to fit temperature-dependent group interaction parameters for the group contribution method modified UNIFAC (Dortmund) and the group contribution equation of state VTPR.  相似文献   

4.
The solubilities and the physicochemical properties (densities, viscosities, refractive indices, conductivities, and pH) in the liquid–solid metastable system (NaCl–KCl–CaCl2–H2O) at 288.15 K have been studied using the isothermal evaporation method. Based on the experimental data, the dry-salt phase diagram, water-phase diagram and the diagram of physicochemical properties vs. composition in the system were plotted. The dry-salt phase diagram of the system includes one three-salt co-saturated point, three metastable solubility isotherm curves, and three crystallization regions corresponding to sodium chloride, potassium chloride and calcium chloride hexahydrate. Neither solid solution nor double salts were found. Based on the extended Harvie–Weare (HW) model and its temperature-dependent equation, the values of the Pitzer parameters β(0), β(1), C for NaCl, KCl and CaCl2, the mixed ion-interaction parameters θNa,K, θNa,Ca, θK,Ca, ΨNa,K,Cl, ΨNa,Ca,Cl, ΨK,Ca,Cl, the Debye–Hückel parameter A and the standard chemical potentials of the minerals in the quaternary system at 288.15 K were obtained. In addition, the average equilibrium constants of metastable equilibrium solids at the same temperature were obtained using a method derived from the activity product constant for the metastable system. Using the standard chemical potentials of the minerals and the average equilibrium constants of solids at equilibrium, the solubility predictions for the quaternary system are presented. A comparison between the calculated and experimental results shows that the predicted solubilities obtained with the extended HW model using the average equilibrium constants agree well with experimental data.  相似文献   

5.
Liquid–liquid equilibrium data are presented for the pseudoternary systems isooctane–benzene–(90 mass% methanol + 10 mass% water) at 298.15 K and isooctane–benzene–(80 mass% methanol + 20 mass% water) at 298.15 and 308.15 K, under atmospheric pressure. The experimental tie-line data obtained define the binodal curve for each one of the studied systems which depending on the amount of water present show type I or type II liquid–liquid phase diagrams. In order to obtain a general view of the effect of water on the partitioning of methanol and hence on the size of the two-phase region we have also determined experimentally ‘isowater’ tolerance curves for the system isooctane–benzene–methanol at 298.15 K, hence the tie-line data were also obtained for the ternary system. The experimental tie-line data for the four systems studied were correlated with the NRTL and UNIQUAC solution models obtaining a very good reproduction of the experimental behaviour.  相似文献   

6.
Solid–liquid equilibria (SLE) of N,N,N′,N′-tetramethylethylenediamine, 1,4-dimethylpiperazine and N,N-dimethylaniline+n-heptane or cyclohexane mixtures were measured by a static method. It was found that all systems are simple eutectic systems. Group contribution models have proved fairly successful in predicting SLE, however, the presence of intramolecular effects (ring effect, proximity effect) renders the widely used empirical methods quite inaccurate. However, in this work, the experimental phase diagrams compared satisfactorily with group contribution models (DISQUAC) and also modified UNIFAC (Dortmund version) predictions.  相似文献   

7.
This work deals with the phase transfer catalysed cyanide displacement reaction on 1-(4-isobutyl phenyl) ethyl chloride to synthesize 2-(4-isobutyl phenyl) propionitrile, which is an intermediate for the synthesis of ibuprofen analogs, belonging to a class of NSAID (nonsteroidal anti-inflammatory drugs). The reaction was studied using solid–liquid phase transfer catalysis (S-L PTC) with trace quantities of water, forming the so-called omega phase at 90 °C. The rates of reaction and selectivity to the product are enhanced in the S-L(org.)-L (ω) PTC in comparison with S-L PTC, which in turn is superior to L-L PTC; the latter suffers from the disadvantage of side reactions in the aqueous phase. In the current work, the effects of various parameters such as catalyst structure, catalyst loading, substrate loading and temperature were studied on the conversion and rates of reaction of 1-(4-isobutyl phenyl) ethyl chloride with solid sodium cyanide under S-L and S-L(ω)-L PTC at 90 °C with toluene as the organic solvent. Tetrabutylammonium bromide (TBAB) was found to be the best catalyst. The role of omega liquid phase in intensification of the S-L PTC was theoretically and experimentally investigated. The kinetic constants have been determined and the apparent activation energy is found as 4.2 kcal/mol, which suggests that the reaction is quite fast, which is likely to bring in mass transfer effects.  相似文献   

8.
Consistent vapour–liquid equilibrium (VLE) data for the binary system 1-propanol+1-pentanol and for the ternary system water+1-propanol+1-pentanol are reported at 101.3 kPa. An instrument using ultrasound to promote the emulsification of the partly miscible liquid phases have been used in the determination of the vapour–liquid–liquid equilibrium (VLLE). The VLE and VLLE data were correlated using UNIQUAC.  相似文献   

9.
Reverse nonequilibrium molecular dynamics in the canonical ensemble and coupled–decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to predict the low-shear rate Newtonian viscosities and vapor–liquid coexistence curves for 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,2,4-butanetriol modeled with the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field. Comparison with available experimental data demonstrates that the TraPPE-UA force field yields very good predictions of the viscosities and vapor–liquid coexistence curves. A detailed analysis of liquid structure and hydrogen bonding is provided.  相似文献   

10.
The important known regularities and thermodynamic properties of liquid mercury have been studied based on the average potential energy. Recognised regularities, the linearity of Zeno contour, bulk modulus and secant bulk modulus as functions of temperature, isochors of pressure versus temperature and near linearity of the inverse isobaric expansion coefficient have been investigated, all evaluated using the Goharshadi–Morsali–Abbaspour equation of state. The validity of the equation of state in predicting thermophysical properties is confirmed by a statistical parameter, absolute average deviation, with a maximum value of 0.41, showing excellent agreement with the experiment at temperatures between 293.15 and 323.15?K from low to high pressures.  相似文献   

11.
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl adipate have been determined experimentally at 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining binodal curve and tie-lines. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. UNIFAC and modified UNIFAC models were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data of CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

12.
The perturbed Yukawa chain equation of state (EoS) has been employed to calculate the liquid density of refractory metals over a wide range of temperatures and pressures. The model uses three independent parameters: m-segment number, σ-segment size, and ε/k-segment energy. For pure components, parameters have been obtained by fitting the models to experimental data on liquid densities. Our calculations on the liquid density of tantalum, rhenium, molybdenum, titanium, zirconium, hafnium and niobium from undercooled temperatures up to several hundred degrees above the boiling point and pressures ranging from 0 to 200?MPa reproduces very accurately the experimental pVT data.  相似文献   

13.
In the present paper, liquid–liquid equilibrium in binary systems containing the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate is studied. It was suggested in papers published by other authors that 1-ethyl-3-methylimidazolium ethylsulfate could potentially be a suitable solvent for extracting aromatic compounds from mixtures containing aliphatic hydrocarbons, such as naphtha cracker feeds. To be able to assess the selectivity of 1-ethyl-3-methylimidazolium ethylsulfate towards aliphatic, cyclic, and aromatic hydrocarbons, mutual solubilities of the ionic liquid and n-heptane, methylcyclohexane, and toluene were measured by the volumetric method. To evaluate quantitatively the quality of the experimental data and their agreement with available literature values, a correlation by two polymer-solution models, the modified Flory–Huggins equation proposed by De Sousa and Rebelo and the thermodynamic lattice model proposed by Qin and Prausnitz was carried out, the model parameters being optimized by a gnostic regression method.  相似文献   

14.
The objective of the present work is to represent the solid–liquid equilibrium of potassium sulfate in diverse water + organic solvent mixtures. This representation is carried out between 288.15 and 318.15 K in the following solvent mixtures: water + 1-propanol, water + methanol, water + ethanol and water + acetone. The experimental solubility data of the potassium sulfate in the diverse mixed solvents were obtained from literature, and the thermodynamic representation of the phase equilibrium is based on a simple methodology reported in the literature. Good agreements are observed between the results obtained in this work and the experimental solubility data of K2SO4 in the different solvent mixtures.Since these systems present a notable decrease in solubility owing to the effect of the cosolvent, making them potentially suitable for separating potassium sulfate by drowning-out the crystallization process, the amounts of salt precipitated, as a function of the weight percent of cosolvent, was calculated for the four systems analyzed. In addition, the optimum yield was estimated as function of the mass fraction of 1-propanol for the K2SO4 + water + 1-propanol system.  相似文献   

15.
Consistent vapor–liquid equilibrium data for the ternary system 1-pentanol–1-propanol–water is reported at 101.3 kPa at temperatures in the range of 362–393 K. The VLE data were satisfactorily correlated with UNIQUAC model.  相似文献   

16.
Isothermal vapor–liquid equilibrium (VLE) at 333.15 K and 353.15 K for four binary mixtures of benzene + toluene, benzene + N-methylformamide, toluene + m-xylene and toluene + N-methylformamide have been obtained at pressures ranged from 0 kPa to 101.3 kPa. The NRTL, UNIQUAC and Wilson activity coefficient models have been employed to correlate experimental pressures and liquid mole fractions. The non-ideal behavior of the vapor phase has been considered by using the Soave–Redlich–Kwong equation of state in calculating the vapor mole fraction. Liquid and vapor densities were also measured by using two vibrating tube densitometers. The Pxy diagram and the activity coefficient indicate that two mixtures of benzene + toluene and toluene + m-xylene were close to the ideal solution. However, two mixtures containing N-methylformamide present a large positive deviation from the ideal solution. The excess Gibbs energy in the benzene + toluene mixture is negative indicates that it is an exothermic system.  相似文献   

17.
Isothermal vapor–liquid equilibrium (VLE) data for five binary systems ethyl acetate + 3-methyl-1-butanol, ethanol + 3-methyl-1-butanol, ethyl acetate + 2-methyl-1-butanol, ethanol + 2-methyl-1-butanol, ethyl acetate + 2-methyl-1-propanol, involved in the alcoholic distillation have been determined experimentally by headspace gas chromatography. The composition in the liquid phase was corrected with the help of an iterative method by means of a GE model. However, due to the large density difference between the liquid and the vapor, the correction of the liquid phase composition is nearly negligible. All the binary mixtures show positive deviations from Raoult's law. The experimental VLE data are well predicted by using the modified UNIFAC model (Dortmund).  相似文献   

18.
Liquid–liquid equilibria (LLE) of the multicomponent system water + ethanol + a synthetic reformate (composed of benzene, n-hexane, 2,2,4-trimethylpentane, and cyclohexane) was studied at atmospheric pressure and at 283.15 and 313.15 K. The mutual reformate–water solubility with addition of anhydrous ethanol was investigated. Different quantities of water were added to the blends in order to have a wide water composition spectrum, at each temperature. We conclude from our experimental results, that this multicomponent system presents a very small water tolerance and that phase separation could result a considerable loss of ethanol that is drawn into the aqueous phase. The results were also used to analyse the applicability of the UNIFAC group contribution method and the UNIQUAC model. Both models fit the experimental data with similar low average root mean square deviations (rsmd ≤ 2.05%) yielding a satisfactory equilibrium prediction for the multicomponent system, although the predicted ethanol (rsmd ≤ 4.6%) compositions are not very good. The binary interaction parameters needed for the UNIQUAC model were obtained from the UNIFAC method.  相似文献   

19.
A dispersive liquid–liquid microextraction procedure coupled with GC‐MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid–liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.  相似文献   

20.
In the present study, an activity coefficient model, based on the concept of local volume fractions and the Gibbs–Helmholtz relation, has been developed. Some modifications were made from Tan–Wilson model (1987) and TK–Wilson model (1975) to represent activity coefficients in mixed solvent–electrolyte systems. The proposed model contains two groups of binary interaction parameters. One group for solvent–solvent interaction parameters corresponds to that given by the TK–Wilson model (1975) in salt-free systems. The other group of salt–solvent interaction parameters can be calculated either from vapor pressure or bubble temperature data in binary salt–solvent systems. It is shown that the present model can also be used to describe liquid–liquid equilibria. No ternary parameter is required to predict the salt effects on the vapor–liquid equilibria (VLE) of mixed solvent systems. By examining 643 sets of VLE data, the calculated results show that the prediction by the present model is as good as that by the Tan–Wilson model (1987), with an overall mean deviation of vapor phase composition of 1.76% and that of the bubble temperature of 0.74 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号