首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang Z  Yang SD  Leaird DE  Weiner AM 《Optics letters》2005,30(12):1449-1451
We demonstrate essentially distortionless 50 km fiber transmission for approximately 500 fs pulses, using dispersion-compensating fiber and a programmable pulse shaper as a spectral phase equalizer. This distance is approximately five times longer than previously achieved at similar pulse widths.  相似文献   

2.
We demonstrate a novel method for spectral analysis of microwave signals that employs time-domain processing in fiber. We use anomalous dispersion in single-mode fiber to perform a Fresnel transform followed by a matched amount of dispersion-compensating fiber to perform an inverse Fresnel transform of an ultrashort pulse. After the Fresnel-transformed waveform is modulated by the microwave signal, the waveform at the output of the dispersion-compensating fiber represents the ultrashort pulse convolved with the microwave spectrum. An experimental system for spectral analysis of microwave signals in the range 6-21 GHz is demonstrated.  相似文献   

3.
We show that frequency-wavelength tuning characteristics of acousto-optic coupling can be used for measuring the difference of effective index, group index, and chromatic dispersion between core and cladding modes in single-mode fibers. Chromatic dispersion measurements of a 30-cm-long conventional single-mode fiber, a nonzero dispersion-shifted fiber, and a dispersion-compensating fiber with this new method are presented for the wavelength range 1500-1600 nm. Qualitative agreement with independently measured data is obtained.  相似文献   

4.
We present a mode-locked ytterbium fiber laser with a higher-order mode fiber compensating the group-velocity dispersion and partially the third-order dispersion of the single-mode fiber at a wavelength of 1 microm. The generated pulses had an energy of 0.5 nJ and could be dechirped externally to a pulse duration of less than 60 fs. The power spectrum shows a spectral full width at half-maximum of 57 nm.  相似文献   

5.
We analyze the interplay of nonlinearity and dispersion in a dispersion-decreasing photonic bandgap Bragg fiber as a new platform for generating parabolic pulses. A suitably designed linearly tapered, low-index-contrast, solid-core Bragg fiber - amenable to fabrication by conventional modified chemical vapor deposition technology - is shown to yield stable parabolic pulses. The fiber design was optimized through a simple and accurate transfer-matrix formalism and pulse evolution was studied by the well-known split-step Fourier method. Our study revealed feasibility of generating parabolic pulses in such a dispersion-decreasing Bragg fiber of length as short as 1 m. We have also studied the effect of third order dispersion on generated parabolic pulse, which is an important deteriorating factor in such applications. The effective single-mode operation of the proposed device is achieved through appropriate tailoring of the outer cladding layers.  相似文献   

6.
The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber continuum, the compressed pulses reflect a compression ratio of 24.  相似文献   

7.
We consider the influence of the polarization mode dispersion, which is stipulated by the presence of random inhomogeneities in single-mode fiber lightguides, on the propagation of ultrashort optical pulses in the fiber communication lines with very weak linear birefringence. Evolution of the envelope of ultrashort optical pulses and their spectra as functions of the length of a single-mode fiber lightguide with very weak linear birefringence and random inhomogeneities are obtained by the method of mathematical simulation. An increase in the pulse duration is shown to be proportional to the square root of the length of a single-mode fiber lightguide. The numerical-simulation results are compared with the results of experimental measurements of the polarization mode dispersion.  相似文献   

8.
Tian Z  Plant DV 《Optics letters》2011,36(23):4542-4544
We report on an optical fiber Mach-Zehnder interferometer made by offset splicing a dual-mode fiber with two single-mode fibers. The extinction ratio can be tuned from less than 1 dB to greater than 28 dB by rotating the dual-mode fiber along its axial direction. The interferometer is utilized as a pulse shaper to convert a 2.5 ps Gaussian pulse to a 5.2 ps flat-top pulse.  相似文献   

9.
We present the experimental realization of a method to generate predetermined, arbitrary pulse shapes after transmission through an optical fiber in the nonlinear regime. The method is based on simulating the reverse propagation of the desired pulse shape in the fiber. First, linear and nonlinear parameters of a single-mode step-index fiber required for the simulation are determined. The calculated pulse shapes are then generated in a pulse shaper.  相似文献   

10.
An acousto-optic pulse shaper has been used to characterize few-cycle pulses generated in a hollow-core fiber. A grism pair precompensates for the dispersion of the acousto-optic crystal, allowing the full pulse-shaping window to be used for replica generation rather than self-compensation. A 9.4 fs pulse was measured, the shortest ever measured with an acousto-optic pulse shaper, to our knowledge.  相似文献   

11.
A single-mode fiber with a linear or sinusoidal variation in the group-velocity dispersion is fabricated. The nonreciprocal effects and pulse compression due to the longitudinal oscillations of the fiber dispersion are experimentally demonstrated. The periodic modulation of the dispersion can be used to control the pulse dynamics.  相似文献   

12.
樊立明  王世杰 《光学学报》1991,11(6):81-486
本文报道在单模光纤中的受激喇曼散射的实验结果,用条纹相机测量了泵浦脉冲和喇曼斯托克斯脉冲时间上的相对延迟;结果表明,受激喇曼散射的喇曼斯托克斯脉冲大约在距光纤输入端一个分离距离的位置上形成。  相似文献   

13.
We report on remote delivery of 25-pJ broadband near-infrared femtosecond light pulses from a Ti:sapphire laser through 150 m of single-mode optical fiber. Pulse distortion caused by dispersion is overcome with precompensation by adaptive pulse shaping techniques, while nonlinearities are mitigated by use of an SF10 glass rod for the final stage of pulse compression. A near-transform-limited pulse duration of 130 fs was measured after the final compression.  相似文献   

14.
马晓璐  李培丽  郭海莉  张一  朱天阳  曹凤娇 《物理学报》2014,63(24):240601-240601
利用单模光纤中的光弹效应和交叉相位调制(XPM)效应,提出了一种频率分辨光学开关法测量超短脉冲的新方案.在本方案中,单模光纤的前一部分产生可变延迟,后一部分作为非线性介质产生非线性效应.该方案只需一根单模光纤,无须复杂的光路校准,结构简单,损耗低;光纤中的XPM效应易发生,无须相位匹配.对提出的方案进行了数值模拟,采用基于矩阵的主元素广义投影算法,恢复出待测脉冲的幅度和相位信息,并研究了光纤长度和待测超短脉冲的脉冲宽度对测量结果的影响.结果表明:测量准确度随着光纤长度的增加而提高,选取长度为2 km的光纤,就可以实现对超短脉冲的准确测量;本文方案适用于脉冲宽度不小于80 fs的超短光脉冲的测量.  相似文献   

15.
吕志国  杨直  李峰  李强龙  王屹山  杨小君 《物理学报》2018,67(18):184205-184205
高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980, 1000,1050, 1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203, 195, 196, 187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.  相似文献   

16.
Shaping the temporal profile of subterawatt optical pulses with a femtosecond duration is demonstrated with the help of a programmable pulse shaper, which is based on a liquid–crystal spatial light modulator. For safe operation, we place the pulse shaper between regenerative and multipass amplifiers. We generate double pulses, whose respective component pulses have 0.27-TW peak power and 74-fs duration. The possibility of variously-shaped multiterawatt pulses is also discussed.  相似文献   

17.
Experimental results on the pulse compression of 1-nJ, 150-fs pulses from a tunable, 76-MHz Ti:sapphire laser oscillator operating at around 750 nm are reported. The length of the pulses can be compressed to nearly one tenth by applying a high-delta, single-mode microstructured optical fiber exhibiting zero group-delay dispersion at 767 nm, and by a prism-pair/chirped-mirror compressor. The experimental results are verified by theoretical investigations modeling the pulse propagation taking into account non-linear self-phase modulation and fiber dispersion. Received: 10 June 2002 / Revised version: 15 November 2002 / Published online: 12 February 2003 RID="*" ID="*"Corresponding author. Fax: +36-1/375-4553, E-mail: szipoecs@sunserv.kfki.hu  相似文献   

18.
Sun PC  Mazurenko YT  Fainman Y 《Optics letters》1997,22(24):1861-1863
We introduce and experimentally demonstrate a novel technique for one-dimensional coherent imaging through a single-mode optical fiber by use of a pulse shaper and a pulse imager. In contrast to the wavelength-division-multiplexed encoding technique, our approach preserves both amplitude and phase information of the optical signal transmitted through the fiber, allowing one to encode longitudinal in addition to transverse optical information. The effect of the fiber-material dispersion on our imaging technique is analyzed, and potential solutions are discussed.  相似文献   

19.
By seeding a noncollinear optical parametric amplifier with a photonic crystal fiber supercontinuum, temporally well-defined amplified output pulses have been generated with durations down to 13 fs. The phase of the supercontinuum seed has been characterized by the ZAP-SPIDER technique and can be tailored with a femtosecond pulse shaper. Thus, a very flexible source for arbitrarily shaped, amplified ultrashort laser pulses has been realized.  相似文献   

20.
构建了一种能够直接输出高功率贝塞尔超短脉冲的光纤激光放大器. 该方案基于在光纤端面特殊设计和制备的微型负轴锥镜, 针对常规超短脉冲光纤激光放大系统所设计, 不需要引入其他分立整形器件, 避免了目前基于轴锥透镜产生贝塞尔光束的通用方法所带来的额外烦琐准直工作, 极大简化了产生贝塞尔光束的方法. 其中的微型负轴锥镜由聚焦粒子束刻蚀法在一段掺镱大模场光子晶体光纤的端面制备, 它和光纤激光系统中的固有准直透镜构成了集成化的光束整形器件. 基于数值模拟结果成功搭建的系统与理论设计一致, 直接输出了在米量级具有高度准直无衍射特性的啁啾皮秒贝塞尔超短脉冲波包, 平均功率高达10.1 W, 对应脉冲能量178 nJ, 经过光栅对压缩后脉冲宽度可达140 fs. 关键词: 衍射 超短脉冲产生 光纤器件 光纤激光器  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号