首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
Nd3+:Gd3Ga5O12(Nd:GGG)晶体是热容固体激光器的一种重要的工作介质.采用提拉法沿〈111〉方向生长出了Nd:GGG单晶,利用激光器、应力仪和偏光显微镜等仪器和方法,对晶体的小面生长及核心等缺陷进行了观察,分析了小面生长的机理,并提出了消除这些缺陷的办法.通过研究,为改善生长工艺、生长大尺寸优质Nd:GGG晶体提供参考.  相似文献   

2.
由于Nd3 离子半径0.112nm和Y3 离子半径0.101nm相差10.9%,使得Nd3 离子非常难于进入YAG晶体中。我们用温度梯度法生长了大尺寸高浓度(2.8 at%)的Nd:YAG晶体,同时与用提拉法Nd:GGG晶体进行了比较。分析了高浓度掺杂Nd:GGG和Nd:YAG晶体浓度猝灭问题。研究了不同浓度掺杂的猝灭效应。在同样的掺杂浓度下,我们发现它们的猝灭程度不同,其原因是两种晶体中ΔE(m is-)m和ΔE(m i s )m不同。  相似文献   

3.
Nd:GGG晶体生长与开裂研究   总被引:3,自引:0,他引:3  
本文采用提拉法(CZ)生长了Nd:GGG晶体,并从理论上讨论了包裹物、提拉速度、晶体转速和降温速率等因素对晶体开裂的影响,最后给出了生长元开裂Nd:GGG晶体的最佳工艺参数:径向温度梯度越小越好,纵向温度梯度在0.5℃/mm,提拉速度2~4mm/h,晶体转速20~40r/min,降温速率不超过20℃/h.通过设计合理而稳定的温场、选择最佳工艺参数及退火处理等方法,较好地解决了Nd:GGG晶体开裂问题.  相似文献   

4.
Nd^3+:Gd3Ga5O12晶体的室温吸收光谱和荧光光谱   总被引:1,自引:0,他引:1  
用提拉法生长了掺钕的钆镓石榴石 (Nd3 + :GGG)激光晶体。研究了室温下的吸收光谱和荧光光谱性质 ,分析了Nd3 + :GGG晶体4F3 / 2 →4I11/ 2 能级跃迁与 1.0 6 μm附近的荧光谱线之间的关系。吸收系数、发射系数、荧光寿命分别是 4 .32× 10 -2 0 cm-2 ,2 .3× 10 -19cm-2 ,2 4 0 μs,比较了Nd3 + ∶GGG和Nd3 + ∶YAG的物理参数 ,实验表明 :Nd3 + ∶GGG较Nd3 + ∶YAG有一系列的优点。  相似文献   

5.
Nd3+:d3Ga5O12晶体的室温吸收光谱和荧光光谱   总被引:1,自引:0,他引:1  
用提拉法生长了掺钕的钆镓石榴石(Nd3+:GG)激光晶体.研究了室温下的吸收光谱和荧光光谱性质,分析了Nd3+:GG晶体4F3/2→4I11/2能级跃迁与1.06μm附近的荧光谱线之间的关系.吸收系数、发射系数、荧光寿命分别是4.32×10-20 cm-2,2.3×10-19cm-2, 240μs, 比较了Nd3+∶GGG 和 Nd3+∶YAG 的物理参数,实验表明:d3+∶GGG较Nd3+∶YAG有一系列的优点.  相似文献   

6.
采用提拉法生长了直径为136mm的Nd3+:GGG单晶,通过X射线衍射和X射线荧光对晶体的结构、成分沿生长方向和径向的变化进行了测试分析.结果表明单胞晶格参数沿晶体的生长方向和径向均逐步变大,平均变化率分别为3.1×10-6(A)/ mm、1.3×10-5(A)/mm;沿着晶体的生长方向,Nd和Gd组分按指数函数规律逐步增加,而Ga组分则按高斯函数逐渐减小.沿晶体径向从内到外,Nd、Gd组分按线性规律逐渐增大,其变化率分别为0.0014 at;/ mm、0.00924 at;/ mm,Ga组分则按线性规律减小,变化率为-0.0117 at;/ mm.这些变化主要是由于Nd3+的分凝效应、Ga挥发所导致.  相似文献   

7.
本文系统综述了Nd∶GGG晶体在国内外的研究进展,总结了通过掺杂手段来优化其性能的部分工作,并探讨了目前Nd∶GGG晶体实现高功率激光输出过程中存在的问题及其未来的发展趋势.  相似文献   

8.
采用提拉法生长了最大尺寸为φ25mm×(30~40)mm优质透明的Tm3+:GGG、Yb3+/Tm3+:GGG、Cr3+/Tm3+:GGG、Tm3+/Ho3+:GGG和Cr3+/Tm3+/Ho3+:GGG共五种晶体.在室温下测试了这些晶体的吸收光谱、荧光光谱及荧光衰减曲线等,详细研究了光谱性能,对部分晶体进行了Judd-Ofelt理论计算,得到强度参数等重要的光谱参数.计算了~2.0μm附近荧光峰值波长处相应的能级跃迁的发射截面、量子效率等.研究表明:Yb3+和Cr3+的掺入分别使得Tm:GGG晶体在980nm附近和451 nm、628 nm附近的吸收大大增强,有利于商业激光二极管和闪光灯泵浦.在Tm激活的Tm3+:GGG、Yb3+/Tm3+:GGG、Cr3+/Tm3+:GGG晶体中,~2.0μm波段附近发射强度和发射截面值最大的峰值对应的波长为2000nm;而在Ho激活的Tm3+/Ho3+:GGG和Cr3+/Tm3+/Ho3+:GGG晶体中,发射强度和发射截面最大的峰值对应的波长为2080 nm.用氙灯抽运键合的尺寸为φ5mm×45mm Cr3+/Tm3+/Ho3+:Gd3+ Ga5 O12晶体,在2.086~2.102μm波段实现了平均功率为170 mw的激光输出.  相似文献   

9.
本文采用提拉法生长了Nd:GGG晶体,并对晶体缺陷进行了系统分析,对晶体组分过冷分析结果发现,组分过冷在晶体中产生了空洞,对空洞中的物质进行了扫描电镜及能谱分析,发现组分过冷产生了第二相,用化学侵蚀法显示侵蚀坑的形貌基本呈三角形,并且位错产生了滑移现象,滑移原因是晶体切片时的外力造成的.  相似文献   

10.
本论文采用提拉法 (CZ)生长了尺寸为1 5mm× 2 0mm的Nd :NaY(WO4) 2 晶体 ,并从理论上讨论了温度梯度、提拉速度、晶体转速和晶体尺寸等工艺参数以及热应变等因素对晶体开裂的影响 ,给出了生长Nd :NaY(WO4) 2 晶体的最佳工艺参数  相似文献   

11.
The structural and optical features of gallium gadolinium garnet (GGG) nanopowders doped with neodymium were investigated. Nanopowders of GGG:Nd were prepared by modified sol‐gel method using acetic acid as complexing agent. This way permitted to incorporate large amounts of dopant (up to 10 %) without destroying garnet structure. Small single crystals of Nd:GGG were grown by a μ‐pulling down method and spectroscopic features of nanopowders and their single crystal counterparts were compared. It has concluded that the Nd3+ ions are located preferentially in the same type of sites in crystal lattices of GGG:Nd nanopowders and their single crystal counterparts. In addition, it follows from the perfect agreement of emission wavelengths and line width recorded for nanopowders and single crystal samples that the crystal lattice of GGG in nanopowders is not distorted. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Gadolinium gallium garnets substituted with (Ca,Zr), (Mg,Zr) and (Ca,Mg,Zr) are considered to be potential new laser materials. Such substituted GGG boules double-doped with (Nd,Cr) and single-doped with Cr have been grown by the Czochralski method. Color center investigation and lattice constant determination have been carried out. Laser output slope efficiency for a GGG(Ca,Mg,Zr) : (Nd,Cr) rod of dimensions 5 mm diameter by 40 mm long is greater than 0.7%.  相似文献   

13.
吸收光谱测量晶体折射率的简易方法   总被引:1,自引:0,他引:1  
折射率是晶体的基本参数,本文提出了利用透过光谱来测量晶体折射率的简易方法,此种方法具有对样品的尺寸要求低、测量范围无限制、操作简单、易获得一定光谱范围晶体折射率的优点.用吸收光谱法和自准直法测量了Nd:GGG的折射率,二者给出的折射率测量结果符合得很好,表明用晶体透射光谱来测量折射率是一种有效的简易测量方法.  相似文献   

14.
In this paper, we report the growth of neodymium doped Gadolinium Gallium Garnet (Nd: GGG) crystal using Czochralski (CZ) method, and study the effects of crucible bottom deformation and thermal insulator thickness on the growth process and crystal quality. Garnet structure and <111> crystallography orientation of the crystal were confirmed by the X‐Ray diffraction (XRD) analysis. Macroscopic defects, residual stresses, quality, and homogeneity of the crystals were investigated by means of parallel plane polariscope and laser fizeau interferometer respectively and the results compared together. Experimental observations show that the crucible bottom deformation from flat to convex, and decreasing the thickness of zirconia insulator under the crucible result in the formation of lateral cores and increasing the crystal inhomogeneity and tensions, leading to the decrease of the crystal quality. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
以浓度分布差小和退火后光学均匀性好为目的,通过改造温场,分阶段调整生长界面、搅拌速度、提拉速度、温度、时间等工艺参数,改善了Nd:YVO4激光晶体的光学质量和光学均匀性.  相似文献   

16.
采用固-液两相混合,使NdO3、Y2O3和V2O5在近常温条件下初步合成Nd:YVO4多晶原料,降低固相合成反应温度,减少V2O5在多晶原料制备过程中的挥发.讨论了a方向Nd:YVO4单晶生长条件,采用提拉法,以(100)方向进行单晶生长,得到一系列掺杂浓度的Nd:YVO4单晶.  相似文献   

17.
Slices cut from various locations in two GGG spirals grown by the Czochralski method have been studied using double crystal X-ray topography. In selected regions of the slices the lattice parameter has been measured by a modified Bond method. An increase of lattice parameter has been found in the outer part of the crystal where growth bands have smaller periodicity than those in the central region of the spiral. An analysis of crystallization front changes allowed us to suppose that the asymmetry of the heat field around the growing crystal, and the forced convection of the melt, are responsible for the crystal's growing in the shape of a spiral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号