首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA-protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 different proteins, and have a molecular mass totaling over 2.5 million Daltons. The past few years have seen the resolution of structures at the atomic level for both large and small subunits and of the complete 70S ribosome from Thermus thermophilus at a resolution of 5.5-A. Soaking of small ligands (such as antibiotics, substrate analogues, and small translational factors) into the crystals of the subunits has revolutionized our understanding of the central functions of the ribosome. Coupled with the power of cryo-electron microscopic studies of translation complexes, a collection of snap-shots is accumulating, which can be assembled to create a likely motion picture of the bacterial ribosome during translation. Recent analyses show yeast ribosomes have a remarkable structural similarity to bacterial ribosomes. This Review aims to follow the bacterial ribosome through each sequential "frame" of the translation cycle, emphasizing at each point the features that are found in all organisms.  相似文献   

2.
An approach that combines limited proteolysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been developed to probe protease-accessible sites of ribosomal proteins from intact ribosomes. Escherichia coli and Thermus thermophilus 70S ribosomes were subjected to limited proteolysis using different proteases under strictly controlled conditions. Intact ribosomal proteins and large proteolytic peptides were recovered and directly analyzed by MALDI-MS, which allows for the determination of proteins that are resistant to proteolytic digestion by accurate measurement of molecular weights. Larger proteolytic peptides can be directly identified by the combination of measured mass, enzyme specificity, and protein database searching. Sucrose density gradient centrifugation revealed that the majority of the 70S ribosome dissociates into intact 30S and 50S subunits after 120 min of limited proteolysis. Thus, examination of ribosome populations within the first 30 to 60 min of incubation provides insight into 70S structural features. Results from E. coli and T. thermophilus revealed that a significantly larger fraction of 50S ribosomal proteins have similar limited proteolysis behavior than the 30S ribosomal proteins of these two organisms. The data obtained by this approach correlate with information available from the high-resolution crystal structures of both organisms. This new approach will be applicable to investigations of other large ribonucleoprotein complexes, is readily extendable to ribosomes from other organisms, and can facilitate additional structural studies on ribosome assembly intermediates.  相似文献   

3.
Structural analysis of the recently determined high resolution structures of the small and the large ribosomal subunits from three bacterial sources, assisted by the medium resolution structure of a complex of the entire ribosome with three tRNAs, led to a quantum jump in our understanding of the process of the translation of the genetic code into proteins. Results of these studies highlighted dynamic aspects of protein biosynthesis; illuminated the modes of action of several antibiotics; indicated strategies adopted by ribosomes for maximizing their functional activity and revealed a wealth of architectural elements, including long tails of proteins penetrating the particle s cores and stabilizing the intricate folds of the RNA chains. Binding of substrate analogues showed that the decoding and the peptide-bond formation are accomplished mainly by RNA. However, several proteins may be functionally relevant in directing the mRNA and in mediating the proper orientation of the tRNA molecules within the ribosomal rRNA frame. Elements involved in intersubunit contacts or in substrate binding are inherently flexible, but maintain well-ordered characteristic conformations in unbound particles. The ribosomes utilize this conformational variability for optimizing their efficiency and minimizing non-productive interactions, hence disorder of functionally relevant features may be linked to less active conformations or to far from physiological conditions. Clinically relevant antibiotics bind almost exclusively to rRNA. In the small subunit they affect the decoding accuracy or limit conformational mobility and in the large subunit they either interfere with substrate binding, by interacting with components of the peptidyl transferase cavity, or hinder the progression of the growing peptide chain.  相似文献   

4.
Linezolid, an antibiotic of oxazolidinone family, is a translation inhibitor. The mechanism of its action that consists in preventing the binding of aminoacyl-tRNA to the A-site of the large subunit of a ribosome was embraced on the basis of the X-ray structural analysis of the linezolid complexes with vacant bacterial ribosomes. However, the known structures of the linezolid complexes with bacterial ribosomes poorly explain the linezolid selectivity in suppression of protein biosynthesis, depending on the amino acid sequence of the nascent peptide. In the present study the most probable structure of the linezolid complex with a E. coli ribosome in the A,A/P,P-state that is in line with the results of biochemical studies of linezolid action has been obtained by molecular dynamics simulation methods.  相似文献   

5.
In the past 20 years, peptide‐based antibiotics, such as vancomycin, teicoplanin, and daptomycin, have often been considered as second‐line antibiotics. However, in recent years, an increasing number of reports on vancomycin resistance in pathogens appeared, which forces researchers to find novel lead structures for potent new antibiotics. Herein, we report the total synthesis of a defined endo‐type B PPAP library and their antibiotic activity against multiresistant S. aureus and various vancomycin‐resistant Enterococci . Four new compounds that combine high activities and low cytotoxicity were identified, indicating that the PPAP core might become a new non‐peptide‐based lead structure in antibiotic research.  相似文献   

6.
Cahill A  Cunningham CC 《Electrophoresis》2000,21(16):3420-3426
Chronic ethanol feeding has been shown to decrease the number of functionally active mitochondrial ribosomes by 55%. In this work, 55S mitochondrial ribosomes were isolated from rat liver and their constitutive proteins characterized by two-dimensional polyacrylamide gel electrophoresis and quantified by densitometry. A total of 86 proteins were found to be associated with the mitochondrial ribosome. This compares with 70 isolated from cytoplasmic ribosomes. In addition, mitochondrial ribosomal proteins were found to be significantly less basic than their cytoplasmic counterparts. Chronic ethanol feeding was found to significantly decrease the levels of a number of constitutive proteins of the mitochondrial ribosome when compared to those isolated from pair-fed controls. Sucrose density gradient analyses revealed a significant decrease in the number of intact 55S ribosomes. It is suggested that ethanol-elicited alterations in specific constitutive proteins of the mitochondrial ribosome may lead to impaired assembly of the monosome and that this may result in lower levels of those displaying functional activity.  相似文献   

7.
Reversibly switchable fluorescent proteins (RSFPs) are essential for high‐resolution microscopy of biological samples, but the reason why these proteins are photochromic is still poorly understood. To address this problem, we performed molecular dynamics simulations of the fast switching Met159Thr mutant of the RSFP Dronpa. Our simulations revealed a ground state structural heterogeneity in the chromophore pocket that consists of three populations with one, two, or three hydrogen bonds to the phenolate moiety of the chromophore. By means of non‐adiabatic quantum mechanics/molecular dynamics simulations, we demonstrated that the subpopulation with a single hydrogen bond is responsible for off‐switching through photo‐isomerization of the chromophore, whereas two or more hydrogen bonds inhibit the isomerization and promote fluorescence instead. While rational design of new RSFPs has so far focused on structure alone, our results suggest that structural heterogeneity must be considered as well.  相似文献   

8.
Single particle electron cryomicroscopy is nowadays routinely used to generate three-dimensional structural information of ribosomal complexes without the need of crystallization. A large number of structures of functional important ribosomal complexes have thus been determined using this technique. In E. coli 70S ribosomes all three tRNA binding sites could be localized. The ternary complex of EF-TutRNAGTP that delivers the tRNA to the ribosome was directly visualized in a ribosomal complex blocked by the antibiotic kirromycin. Three different functional states of translocation have been studied and the respective EF-G binding sites have been mapped. The level of resolution achievable with electron cryomicroscopy allows conformational changes in the domain structures of elongation factors to be modelled in terms of rigid body movements. Structural information on eukaryotic ribosomes is also available for yeast and mammalian 80S ribosomes. The structural differences between rabbit 80S and E. coli 70S ribosomes could be interpreted in terms of ribosomal RNA expansion segments in the 18S and 23S RNA. The EF-G homologue EF2 was mapped analysing the structure of an 80SEF2sodarin complex and most recently the binding of a hepatitis C virus IRES element to a yeast 40S subunit has been studied. The first electron cryomicroscopical 3D reconstructions have further been used to overcome the initial phasing problems in X-ray crystallographic studies of the ribosome facilitating structure determination of the recent atomic resolution structures of the 30S and 50S ribosomal subunits. In turn, the knowledge of the atomic structure of the ribosome makes detailed interpretations of cryo-EM maps possible at approximately 20 A resolution.  相似文献   

9.
We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.  相似文献   

10.
Using an advanced functional photoresist we introduce direct‐laser‐written (DLW) 3D microstructures capable of complete degradation on demand. The networks consist exclusively of reversible bonds, formed by irradiation of a phenacyl sulfide linker, giving disulfide bonds in a radical‐free step‐growth polymerization via a reactive thioaldehyde. The bond formation was verified in solution by ESI‐MS. To induce cleavage, dithiothreitol causes a thiol–disulfide exchange, erasing the written structure. The mild cleavage of the disulfide network is highly orthogonal to other, for example, acrylate‐based DLW structures. To emphasize this aspect, DLW structures were prepared incorporating reversible structural elements into a non‐reversible acrylate‐based standard scaffold, confirming subsequent selective cleavage. The high lateral resolution achievable was verified by the preparation of well‐defined line gratings with line separations of down to 300 nm.  相似文献   

11.
12.
Double helices are not common in polypeptides and proteins except in the peptide antibiotic gramicidin A and analogous l,d ‐peptides. In contrast to natural polypeptides, remarkable β‐double‐helical structures from achiral γ‐peptides built from α,β‐unsaturated γ‐amino acids have been observed. The crystal structures suggest that they adopted parallel β‐double helical structures and these structures are stabilized by the interstrand backbone amide H‐bonds. Furthermore, both NMR spectroscopy and fluorescence studies support the existence of double‐helical conformations in solution. Although a variety of folded architectures featuring distinct H‐bonds have been discovered from the β‐ and γ‐peptide foldamers, this is the first report to show that achiral γ‐peptides can spontaneously intertwine into β‐double helical structures.  相似文献   

13.
The information for protein structure that is contained in the base sequence of the nucleic acids is translated on the ribosome into the amino acid sequence. This translation can be divided into chain initiation, chain growth, and chain termination. Several specific protein factors and nucleic acids are involved in each section.—For chain initiation, start complexes are formed from the initiating amino acyl-tRNA, mRNA carrying the start signal, and the small and large subunits of a ribosome. GTP and the initiating factors are also involved in this process.—In chain elongation, one amino acid at a time is transferred, in a reaction cycle, from the linkage with tRNA into a linkage with the polypeptide chain. The amino acid to be incorporated is initially bound to the ribosome as amino acyl-tRNA, a process for which GTP and protein factors are necessary. The subsequent formation of a peptide linkage is catalyzed by the peptidyl transferase of the large ribosomal subunit. The peptidyl-tRNA with its newly added amino acid residue is then transferred from the amino acyl-tRNA acceptor site A to the peptidyl donor site P of the ribosome. This requires another protein factor and cleavage of GTP into GDP and phosphate.–Ghain termination begins as soon as one of the three terminator triplets UAA, UAG, or UGA in the mRNA reaches the ribosome. The mRNA is moving in relation to the ribosome from the 5′ end to the 3′ end. Release of the completed polypeptide chain from the ribosome is dependent on release factors. Before initiation of a new polypeptide chain, the ribosomes dissociate into their subunits.  相似文献   

14.
Amyloid fibrils formed by peptides with different sequences exhibit diversified morphologies, material properties and activities, making them valuable for developing functional bionanomaterials. However, the molecular understanding underlying the structural diversity of peptide fibrillar assembly at atomic level is still lacking. In this study, by using cryogenic electron microscopy, we first revealed the structural basis underlying the highly reversible assembly of 1GFGGNDNFG9 (referred to as hnRAC1) peptide fibril. Furthermore, by installing iodine at different sites of hnRAC1, we generated a collection of peptide fibrils with distinct thermostability. By determining the atomic structures of the iodinated fibrils, we discovered that iodination at different sites of the peptide facilitates the formation of diverse halogen bonds and triggers the assembly of entirely different structures of iodinated fibrils. Finally, based on this structural knowledge, we designed an iodinated peptide that assembles into new atomic structures of fibrils, exhibiting superior thermostability, that aligned with our design. Our work provides an in-depth understanding of the atomic-level processes underlying the formation of diverse peptide fibril structures, and paves the way for creating an amyloid “kaleidoscope” by employing various modifications and peptide sequences to fine-tune the atomic structure and properties of fibrillar nanostructures.  相似文献   

15.
Messenger RNAs (mRNAs) with phosphorothioate modification (PS‐mRNA) to the phosphate site of A, G, C, and U with all 16 possible combinations were prepared, and the translation reaction was evaluated using an E. coli cell‐free translation system. Protein synthesis from PS‐mRNA increased in 12 of 15 patterns when compared with that of unmodified mRNA. The protein yield increased 22‐fold when the phosphorothioate modification at A/C sites was introduced into the region from the 5′‐end to the initiation codon. Single‐turnover analysis of PS‐mRNA translation showed that phosphorothioate modification increases the number of translating ribosomes, thus suggesting that the rate of translation initiation (rate of ribosome complex formation) is positively affected by the modification. The method provides a new strategy for improving translation by using non‐natural mRNA.  相似文献   

16.
The single‐crystal X‐ray diffraction analysis of a β,γ‐hybrid model peptide Boc‐β‐Ala‐γ‐Abu‐NH2 revealed the existence of four crystallographically independent molecules ( A , B , C and D conformers) in the asymmetric unit. The analysis revealed that unusual β‐turn‐like folded structures predominate, wherein the conformational space of non‐proteinogenic β‐Ala and γ‐Abu residues are restricted to gauchegaucheskew and skewgauchetransskew orientations, respectively. Interestingly, the U‐shaped conformers are seemingly stabilised by an effective unconventional C? H ??? O intramolecular hydrogen bond, encompassing a non‐covalent 14‐membered ring‐motif. Taking into account the signs of torsion angles, these conformers could be grouped into two distinct categories, A / B and C / D , establishing the incidence of non‐superimposable stereogeometrical features across a non‐chiral one‐component peptide model system, that is, “mirror‐image‐like” relationships. The natural occurrence of β‐Ala and γ‐Abu entities in various pharmacologically important molecules, coupled with their biocompatibilities, highlight how the non‐functionalised β,γ‐hybrid segment may offer unique advantages for introducing and/or manipulating a wide spectrum of biologically relevant hydrogen bonded secondary structural mimics in short synthetic peptides.  相似文献   

17.
《中国化学》2017,35(8):1270-1277
Human serum albumin (HSA ) is an abundant protein in plasma that can bind and transport many small molecules, and the corresponding affinity‐controlled drug delivery shows great advantage in the biological system. Peptide SA06 is a reported ligand comprising 20 amino acids, and is known to non‐covalently bind with HSA to extend the lifetime and improve the pharmacokinetic performance. The structural information of the HSA ‐peptide complex is keen for obtaining molecular insight of the binding mechanism. We studied the secondary structural change and structure‐affinity relations of Peptide SA06 with HSA by using circular dichroism (CD ) spectroscopy in solution. Noticeable allosteric effect can be identified by compositional increase of α ‐helix structures when the peptide was co‐incubated with HSA . Furthermore, the equilibrium dissociation constant of Peptide SA06 with HSA can be determined by CD ‐based method. This work provides structural evidence on the allosteric interaction between peptide ligand and HSA , and sheds light on optimization of therapeutic properties in the affinity‐controlled delivery systems.  相似文献   

18.
To potentially cure neurodegenerative diseases, we need to understand on a molecular level what triggers the complex folding mechanisms and shifts the equilibrium from functional to pathological isoforms of proteins. The development of small peptide models that can serve as tools for such studies is of paramount importance. We describe the de novo design and characterization of an alpha-helical coiled coil based model peptide that contains structural elements of both alpha-helical folding and beta-sheet formation. Three distinct secondary structures can be induced at will by adjustment of pH or concentration. Low concentrations at pH 4.0 yield globular particles of the unfolded peptide, while at the same pH, but at higher concentration, defined beta-sheet ribbons are formed. In contrast, at high concentrations and pH 7.4, the peptide forms highly ordered alpha-helical fibers. Thus, this system allows one to systematically study now the consequences of the interplay between peptide and protein primary structure and environmental factors for peptide and protein folding on a molecular level.  相似文献   

19.
An organic acid catalyzed direct arylation of aromatic C(sp2)? H bonds in phenols and naphthols for the preparation of 1,1′‐linked functionalized biaryls was developed. The products are non‐C2‐symmetrical, atropoisomeric, and represent previously untapped chemical space. Overall this transformation is operationally simple, does not require an external oxidant, is readily scaled up (up to 98 mmol), and the structurally diverse 2,2′‐dihydroxy biaryl (i.e., BINOL‐type), as well as 2‐amino‐2′‐hydroxy products (i.e., NOBIN‐type) are formed with complete regioselectivity. Density‐functional calculations suggest that the quinone and imino‐quinone monoacetal coupling partners are exclusively arylated at their α‐position by an asynchronous [3,3]‐sigmatropic rearrangement of a mixed acetal species which is formed in situ under the reaction conditions.  相似文献   

20.
Lantibiotics are polycyclic peptide antibiotics containing intrachain sulfide bridges, formed from the thioether groups of the amino acids lanthionine and β-methyllanthionine. They also contain α,β-unsaturated amino acids such as didehydroalanine and didehydroaminobutyric acid. A knowledge of the lantibiotic biosynthetic steps and the enzymes involved makes possible a gene technological construction of analogous highly modified polypeptides. To the family of lantibiotics belong nisin, an important food preservative, epidermin, a highly specific therapeutic agent against acne, a series of enzyme inhibitors, as well as immunologically interesting active peptides. Lantibiotics are produced by ribosomal synthesis, starting from inactive precursor proteins (prelantibiotics). The latter are post-translationally converted into the active peptide antibiotics through enzymic modifications. The modifying enzymes effect dehydrations at the serine and threonine residues and stereospecific additions of the cysteine thiol groups to the resulting α,β-unsaturated double bonds, which lead to the formation of several sulfide bridges. Upon subsequent proteolytic cleavage of the leader peptide, the biologically active lantibiotic is formed. Conformational analyses of the lantibiotics, as well as of their prepeptides, enables one to obtain information about the mechanism and steps of the biosynthesis. Antibodies against synthetic prepeptide sequences, and modern instrumental methods for the analysis of peptides, allow structural elucidation of the biosynthetic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号