首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of low-energy antimatter provides unique opportunities to search for new physics in an unexplored regime. Testing gravitational interactions with antimatter is one such opportunity. Here a scenario based on Lorentz and CPT violation in the Standard-Model Extension is considered in which anomalous gravitational effects in antimatter could arise.  相似文献   

2.
Repulsive gravity is not very popular in physics. However, one comes across it in at least two main occurrences in general relativity: in the negative‐r region of Kerr spacetime, and as the result of the gravitational interaction between matter and antimatter, when the latter is assumed to be CPT‐transformed matter. Here we show how these two independent developments of general relativity are perfectly consistent in predicting gravitational repulsion and how the above Kerr negative‐r region can be interpreted as the habitat of antimatter. As a consequence, matter particles traveling along vortical geodesics can pass through the throat of a rotating black hole and emerge as antimatter particles (and vice versa). An experimental definitive answer on the gravitational behavior of antimatter is awaited in the next few years.

  相似文献   


3.
Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related antigravity issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.  相似文献   

4.
I suggest the existence of a still undiscovered interaction: repulsion between matter and antimatter. The simplest and the most elegant candidate for such a force is gravitational repulsion between matter and antimatter. I argue that such a force may give birth to a new Universe; by transforming an eventual Big Crunch of our Universe, to an event similar to Big Bang. In fact, when a collapsing Universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force may create particle-antiparticle pairs from the surrounding quantum vacuum. The amount of antimatter created from the physical vacuum is equal to the decrease of mass of “black hole Universe” and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so huge and fast, that matter of our Universe may disappear in a fraction of the Planck time. So fast transformation of matter to antimatter may look like a Big Bang with initial size about 30 orders of magnitude greater than the Planck length, questioning the need for inflation. In addition, a Big Crunch, of a Universe dominated by matter, leads to a new Universe dominated by antimatter, and vice versa; without need to invoke CP violation as explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous Universe was dominated by antimatter.  相似文献   

5.
《Hyperfine Interactions》1997,109(1-4):1-32
The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 1016, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 1018. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Abhas Mitra 《Pramana》2009,73(3):615-622
One of the outstanding puzzles of theoretical physics is whether quantum information indeed gets lost in the case of black hole (BH) evaporation or accretion. Let us recall that quantum mechanics (QM) demands an upper limit on the acceleration of a test particle. On the other hand, it is pointed out here that, if a Schwarzschild BH exists, the acceleration of the test particle would blow up at the event horizon in violation of QM. Thus the concept of an exact BH is in contradiction with QM and quantum gravity (QG). It is also reminded that the mass of a BH actually appears as an integration constant of Einstein equations. And it has been shown that the value of this integration constant is actually zero! Thus even classically, there cannot be finite mass BHs though zero mass BH is allowed. It has been further shown that during continued gravitational collapse, radiation emanating from the contracting object gets trapped within it by the runaway gravitational field. As a consequence, the contracting body attains a quasi-static state where outward trapped radiation pressure gets balanced by inward gravitational pull and the ideal classical BH state is never formed in a finite proper time. In other words, continued gravitational collapse results in an ‘eternally collapsing object’ which is a ball of hot plasma and which is asymptotically approaching the true BH state with M = 0 after radiating away its entire mass energy. And if we include QM, this contraction must halt at a radius suggested by the highest QM acceleration. In any case no event horizon (EH) is ever formed and in reality, there is no quantum information paradox.  相似文献   

7.
Recently, the Elementary Process Theory has been introduced as an axiomatic system with a potential application as a foundational framework for physics. This addendum clarifies the primitive concepts ‘phase quantum’ and ‘monad’ that play a central role in the physical picture that arises from the axiomatic system.  相似文献   

8.
9.
More than one century is passed by the publication of special relativity and few less by the birth of general relativity. Despite the great experimental successes of these theories, the study of the universe, is plagued by numerous unsolved problems. For example one of the most problems in cosmology is the cosmological constant, which governs the expansion of the universe, also known as dark energy. A substantial portion, about 60%, of the mass-energy in the universe is in a form of mysterious energy that is pushing the cosmos apart at an accelerating rate. What is this energy, and where does it come from? Cosmologists have no real idea. Although given a similar name, there is another problem in cosmology, the so-called dark matter, which is actually unrelated to dark energy, except insofar as they involve things we don’t understand. About 90% of the mass in the universe is in an apparently invisible form of matter that we call dark matter. This dark matter can only be measured by the gravitational pull it has on objects around it, and all galaxies we observe contain large halos of it, often extending for hundreds of thousands of light years beyond the edge of luminous matter. Is this dark matter actual matter, such as weakly interacting massive particles, or perhaps it is just an observational artifact caused by an improper theory of gravity? Another mystery is why there is so much more matter than antimatter in the universe. According to physical theories, these forms of matter are essentially equivalent, but conventional matter is observed in much greater abundances than antimatter. In this paper we summarily introduce the principal alternative theories proposed during one century of relativity.  相似文献   

10.
There has never been a direct measurement of the gravitational force on antimatter. This paper describes a possible measurement of this force by measuring the phase shift of neutral antimatter in a transmission-grating interferometer caused by the Earth’s gravitational field. This experiment avoids the severe problem of shielding stray electromagnetic fields necessary for making a gravity measurement with charged particles, and also avoids the need to trap neutral particles. The neutral antimatter for this experiment could be either antihydrogen, positronium, or antineutrons. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
By matching across a surface of constant time, it is demonstrated that the spacetime for a radiation-dominated Einstein–de Sitter universe can be directly matched to the spacetime for a matter-dominated Einstein–de Sitter universe. Thus, this can serve as a model of a universe filled with radiation that suddenly is converted to matter and antimatter, or a universe filled with matter and antimatter that suddenly annihilates to leave radiation. This matching is shown to hold for asymptotically Einstein–de Sitter cosmological black hole spacetimes, yielding simplistic models of primordial black holes that evolve between being in radiation-dominated universes and matter-dominated universes.  相似文献   

12.
V B Johri  G P Singh 《Pramana》1999,52(2):121-126
The behaviour of gravitational energy and scalar field during the evolution of the universe within the framework of Brans-Dicke theory has been discussed. With help of the Landau-Lifshitz pseudo-tensor for the flat Friedmann-Robertson-Walker model, it is found that (i) the total energy of the universe is always zero, (ii) the Brans-Dicke scalar field for all Ω >-0 contributes energy to the negative energy of gravitational field and this gets transferred to the vacuum energy which accelerates the expansion of the universe.  相似文献   

13.
We discuss the circumstances under which gravity might be repulsive rather than attractive. In particular we show why our standard solar system distance scale gravitational intuition need not be a reliable guide to the behavior of gravitational phenomena on altogether larger distance scales such as cosmological, and argue that in fact gravity actually gets to act repulsively on such distance scales. With such repulsion a variety of current cosmological problems (the flatness, horizon, dark matter, universe age, cosmic acceleration and cosmological constant problems) are then all naturally resolved.  相似文献   

14.
We review the main arguments against antigravity, a different acceleration of antimatter relative to matter in a gravitational field, discussing and challenging Morrison’s, Good’s and Schiff’s arguments. Following Price, we show that, very surprisingly, the usual expression of the Equivalence Principle is violated by General Relativity when particles of negative mass are supposed to exist, which may provide a fundamental explanation of MOND phenomenology, obviating the need for Dark Matter. Motivated by the observation of repulsive gravity under the form of Dark Energy, and by the fact that our universe looks very similar to a coasting (neither decelerating nor accelerating) universe, we study the Dirac-Milne cosmology, a symmetric matter-antimatter cosmology where antiparticles have the same gravitational properties as holes in a semiconductor. Noting the similarities with our universe (age, SN1a luminosity distance, nucleosynthesis, CMB angular scale), we focus our attention on structure formation mechanisms, finding strong similarities with our universe. Additional tests of the Dirac-Milne cosmology are briefly reviewed, and we finally note that a crucial test of the Dirac-Milne cosmology will be soon realized at CERN next to the ELENA antiproton decelerator, possibly as early as fall 2018, with the AEgIS, ALPHA-g and Gbar antihydrogen gravity experiments.  相似文献   

15.
A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms   总被引:1,自引:0,他引:1  
The gravitational acceleration of antimatter has never been measured directly. Antihydrogen atoms, being both stable and neutral, are an ideal system for investigating antimatter gravity. Ultralow temperatures in the 10–100 K range are desirable for practical experiments. It is proposed to cool positive antihydrogen ions using laser-cooled ordinary ions. Ultracold neutral antihydrogen atoms might then be obtained by photodetachment. The gravitational acceleration can readily be determined from the time-of-flight between the photodetachment laser pulse and an annihilation detector.  相似文献   

16.
Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Gamma ray astronomy provides a powerful tool for searching antimatter in the universe; it probably provides the only means to determine, if the universe has baryon symmetry. Presently existing gamma-ray observations can be interpreted without postulating the existence of antimatter. However, the measurements are not precise enough to definitely exclude the possibility of its existence. The search for antimatter belongs to one of the main scientific objectives of the Gamma Ray Observatory GRO of NASA, which will be launched in 1990 by the Space Shuttle.  相似文献   

18.
Bulk Viscous anisotropic Bianchi-III cosmological models are investigated with time dependent gravitational and cosmological constants in the framework of Einstein’s general relativity. In order to get some useful information about the time varying nature of G and Λ, we have assumed an exponentially decaying rest energy density of the universe. The extracted Newtonian gravitational constant G varies with time but its time varying nature depends on bulk viscosity and the anisotropic nature of the model. The cosmological constant Λ is found to decrease with time to a small but positive value for the models.  相似文献   

19.
The effect of the creation of an arbitrary number of massive pairs by a photon in the spatially flat model of the radiation-dominated Universe is considered. The process added-up probability is calculated within the framework of scalar quantum electrodynamics conformally related to the metric of a curved spacetime. The rate of photon decay in the radiation-dominated universe as well as the mean number of the created particles have been found. Comparison of the rate of the pair creation in the photon decays with the rate of the pair creation in the photon-photon collisions which take place in the Minkowski spacetime has been carried out. The estimates having been made show the number density of the particles created in the processes of the photon decays in the radiation-dominated Universe to be by a factor of 1030 higher than the number density of the particles created from the vacuum of the free scalar field by the gravitational background.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号