首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Carbon nanomaterials have been extensively researched in the past few years owing to their interesting properties. The massive research efforts resulted in the emergence of carbon dots, which belong to the carbon nanomaterials family. Carbon dots (C‐dots) have garnered the attention of researchers mainly due to their convenient availability from organic as well as inorganic materials and also due to the novel properties they exhibit. C‐Dots have been said to overcome the era of quantum dots, referring to their levels of toxicity and biocompatibility. In this review, we focus on the discovery of C‐dots, their structure and composition, surface passivation to enhance their optical properties, the various synthetic methods used, their applications in different areas, and future perspectives. Emphasis has been given to greener approaches for the synthesis of C‐dots in order to make them cost effective as well as to improve their biocompatibility.  相似文献   

2.
While carbon dots (C‐dots) have been extensively investigated pertaining to their fluorescent, phosphorescent, electrochemiluminescent, optoelectronic, and catalytic features, their inherent chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) properties are unknown. By virtue of their hydrophilicity and abundant exchangeable protons of hydroxyl, amine, and amide anchored on the surface, we report here that C‐dots can be adapted as effective diamagnetic CEST (diaCEST) MRI contrast agents. As a proof‐of‐concept demonstration, human glioma cells were labeled with liposomes with or without encapsulated C‐dots and implanted in mouse brain. In vivo CEST MRI was able to clearly differentiate labeled cells from non‐labeled cells. The present findings may encourage new applications of C‐dots for in vivo imaging in deep tissues, which is currently not possible using conventional fluorescent (near‐infrared) C‐dots.  相似文献   

3.
Highly biocompatible and highly photostable fluorescent carbon dots (C dots) were obtained through a simple and nontoxic one‐pot hydrothermal method. Polyvinylpyrrolidone, a common and low‐cost biocompatibility reagent, was used as the only carbon source for the first time. The resulting water‐soluble C dots showed a quantum yield of up to 23.58 % with low cytotoxicity, favorable photoluminescent properties, and good photostability. Importantly, the fluorescence intensities of the C dots were quite stable in high‐salt conditions and over a broad pH range (3.0–10.5). The as‐prepared C dots have been demonstrated to be an excellent probe for hydroxyl radicals sensing based on the fluorescence quenching with great sensitivity and specificity. This opens up a new application field for C dots.  相似文献   

4.
Several strategies have been adopted to design an artificial light‐harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye‐encapsulated BSA‐protein‐capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C‐dots) act as donor and AuNCs capped with BSA protein act as acceptor. Analysis reveals that energy transfer increases from 63 % to 83 % in presence of coumarin dye (C153), which enhances the cascade energy transfer from carbon dots to AuNCs. Bright white light emission with a quantum yield of 19 % under the 375 nm excitation wavelength is achieved by changing the ratio of components. Interesting findings reveal that the efficient energy transfer in carbon‐dot–metal‐cluster nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.  相似文献   

5.
Heteroatom doping is an effective way to adjust the fluorescent properties of carbon quantum dots. However, selenium‐doped carbon dots have rarely been reported, even though selenium has unique chemical properties such as redox‐responsive properties owing to its special electronegativity. Herein, a facile and high‐output strategy to fabricate selenium‐doped carbon quantum dots (Se‐CQDs) with green fluorescence (quantum yield 7.6 %) is developed through the hydrothermal treatment of selenocystine under mild conditions. Selenium heteroatoms endow the Se‐CQDs with redox‐dependent reversible fluorescence. Furthermore, free radicals such as .OH can be effectively scavenged by the Se‐CQDs. Once Se‐CQDs are internalized into cells, harmful high levels of reactive oxygen species (ROS) in the cells are decreased. This property makes the Se‐CQDs capable of protecting biosystems from oxidative stress.  相似文献   

6.
A nanocomposite of CdSe quantum dots with nitrogen‐doped carbon nanotubes was prepared for enhancing the electrochemiluminescent (ECL) emission of quantum dots. With hydrogen peroxide as co‐reactant, the nanocomposite modified electrode showed a cathodic ECL emission with a starting potential of ?0.97 V (vs. Ag/AgCl) in phosphate buffer solution, which was five‐times stronger than that from pure CdSe quantum dots and three‐times stronger than that from CdSe quantum dots composited with carbon nanotubes. The latter showed a starting potential of ?1.19 V. This result led to a sensitive ECL sensing of hydrogen peroxide with good stability, acceptable reproducibility and a detection limit down to 2.1×10?7 mol L?1. Nitrogen‐doped carbon nanotubes could be used as a good material for the construction of sensitive ECL biosensors for chemical and biochemical analysis.  相似文献   

7.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

8.
Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria.  相似文献   

9.
Acid catalytic processes play a classic and important role in modern organic synthesis. How well the acid can be controlled often plays the key role in the controllable synthesis of the products with high conversion yield and selectivity. The preparation of a novel, photo‐switchable solid‐acid catalyst based on carbon quantum dots is described. The carbon quantum dots are decorated with small amounts of hydrogensulfate groups and thus exhibit a photogenerated acidity that produces a highly efficient acid catalysis of the ring opening of epoxides with methanol and other primary alcohols. This reversible, light‐switchable acidity is shown to be due to photoexcitation and charge separation in the carbon quantum dots, which create an electron withdrawing effect from the acidic groups. The catalyst is easily separated by filtration, and we demonstrate multiple cycles of its recovery and reuse.  相似文献   

10.
《化学:亚洲杂志》2017,12(22):2916-2921
The doping of nitrogen into carbon quantum dots is vitally important for improved fluorescence performance. However, the synthesis of nitrogen‐doped carbon quantum dots (N‐CQDs) is usually conducted under strong acid and high temperature, which results in environmental pollution and energy consumption. Herein, the N‐CQDs were prepared by a mild one‐pot hydrothermal process. The hydrothermal reaction temperature was adjusted to control the particle size, nitrogen/carbon atomic ratio, and quantum yield. The products were water soluble with a narrow particle size distribution and good dispersion stability over a wide pH range. The N‐CQDs could penetrate into the HeLa cell nucleus without any further functionalization. Moreover, the fluorescence of N‐CQDs could be selectively quenched by Cu2+, which suggested applications for the detection of Cu2+ in human plasma.  相似文献   

11.
Improved cellular selectivity for nucleoli staining was achieved by simple chemical modification of carbon dots (C‐dots) synthesized from waste carbon sources such as cow manure (or from glucose). The C‐dots were characterized and functionalized (amine‐passivated) with ethylenediamine, affording amide bonds that resulted in bright green fluorescence. The new modified C‐dots were successfully applied as selective live‐cell fluorescence imaging probes with impressive subcellular selectivity and the ability to selectively stain nucleoli in breast cancer cell lineages (MCF‐7). The C‐dots were also tested in four other cellular models and showed the same cellular selection in live‐cell imaging experiments.  相似文献   

12.
Carbon nanodots (C‐dots) show great potential as an important material for biochemical sensing, energy conversion, photocatalysis, and optoelectronics because of their water solubility, chemical inertness, low toxicity, and photo‐ and electronic properties. Numerous methods have been proposed for the preparation of C‐dots. However, complex procedures and strong acid treatments are often required, and the as‐prepared C‐dots tend to be of low quality, and in particular, have a low efficiency for photoluminescence. Herein, a facile and general strategy involving the electrochemical carbonization of low‐molecular‐weight alcohols is proposed. As precursors, the alcohols transited into carbon‐containing particles after electrochemical carbonization under basic conditions. The resultant C‐dots exhibit excellent excitation‐ and size‐dependent fluorescence without the need for complicated purification and passivation procedures. The sizes of the as‐prepared C‐dots can be adjusted by varying the applied potential. High‐quality C‐dots are prepared successfully from different small molecular alcohols, suggesting that this research provides a new, highly universal method for the preparation of fluorescent C‐dots. In addition, luminescence microscopy of the C‐dots is demonstrated in human cancer cells. The results indicate that the as‐prepared C‐dots have low toxicity and can be used in imaging applications.  相似文献   

13.
《Electroanalysis》2017,29(8):1968-1975
Hybrid magnetite/carbon quantum dots (MagNP/C‐dots) were prepared and their characterization performed by high resolution transmission electron microscopy (HR‐TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Because of their suitable magnetization and electrochemical properties, they were used as versatile electrode modifiers after magnetically confining onto screen printed carbon electrodes (SPE), with the aid of a miniature external magnet. The reported strategy introduces a convenient procedure for assembling modified electrodes, since the nanoparticles can be easily released by removing the magnet. The non‐enzymatic magnetic biosensor showed excellent performance in the determination of NADH at the concentration range 2×10−7 to 5×10−6 mol L−1, exhibiting a sensitivity of 0.15 μmol L−1 and detection limit of 20 nmol L−1. The MagNP/C‐dots/SPE sensor was also successfully applied for the determination of NADH in serum samples. The interference of typical biological molecules has also been investigated.  相似文献   

14.
This critical review covers the use of carbon nanomaterials (single-wall carbon nanotubes, multi-wall carbon nanotubes, graphene, and carbon quantum dots), semiconductor quantum dots, and composite materials based on the combination of the aforementioned materials, for analytical applications using electrogenerated chemiluminescence. The recent discovery of graphene and related materials, with their optical and electrochemical properties, has made possible new uses of such materials in electrogenerated chemiluminescence for biomedical diagnostic applications. In electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), electrochemically generated intermediates undergo highly exergonic reactions, producing electronically excited states that emit light. These electron-transfer reactions are sufficiently exergonic to enable the excited states of luminophores, including metal complexes, quantum dots and carbon nanocrystals, to be generated without photoexcitation. In particular, this review focuses on some of the most advanced and recent developments (especially during the last five years, 2010–2014) related to the use of these novel materials and their composites, with particular emphasis on their use in medical diagnostics as ECL immunosensors.  相似文献   

15.
16.
Hybrid quantum‐dot‐sensitized solar cells show promising novel optoelectronic properties. An adequate design of such cells requires a deep understanding of the characteristics of each component, including their interactions. In this context, the electrochemical properties of two different hole‐transporting materials (HTMs) and their chemical interactions with trioctylphosphine‐capped CdSe quantum dots are investigated to evaluate their potential use in hybrid quantum‐dot‐sensitized solar cells. Tris[4‐(thien‐2‐yl)phenyl]amine (TTPA) and tris[4‐(selen‐2‐yl)phenyl]amine (TSePA) are studied in the solid state as thin films deposited on a conducting substrate. Spectroelectrochemical studies evidence both solid‐state electropolymerization and doping. Upon addition of TSePA or partially polymerized TTPA to a colloidal solution of trioctylphosphine‐capped CdSe quantum dots, the steady‐state photoluminescence is quenched. This suggests that the quantum dots and the HTM strongly interact, probably through an excited‐state charge‐transfer mechanism. The combination of all these pieces of information indicates that polymerized TTPA and TSePA are potential candidates as HTMs for hybrid quantum‐dot‐sensitized solar cells.  相似文献   

17.
Designing efficient room‐temperature phosphorescence (RTP) carbon dots (C‐dots) without the need of an additional matrix is important for various applications. Herein, matrix‐free and highly efficient C‐dots with yellow‐green RTP emission have been successfully synthesized towards information encryption and decryption. Phytic acid (PA) and triethylenetetramine are used as molecular precursors, and a facile microwave‐assisted heating method is selected as synthesis method. The obtained C‐dots exhibit a maximum phosphorescence emission at around 535 nm under an excitation wavelength of 365 nm and a long average lifetime up to 750 ms (more than 9 s to the naked eye). PA containing six phosphate groups and serving as P source plays a significant role in producing the RTP C‐dots. Furthermore, potential applications of the RTP C‐dots in the field of information encryption and decryption are successfully demonstrated.  相似文献   

18.
Although reports have shown shifts in carbon dot emission wavelengths resulting from varying the excitation wavelength, this excitation‐dependent emission does not constitute true tuning, as the shifted peaks have much weaker intensity than their dominant emission, and this is often undesired in real world applications. We report for the first time the synthesis and photoluminescence properties of carbon dots whose peak fluorescence emission wavelengths are tunable across the entire visible spectrum by simple adjustment of the reagents and synthesis conditions, and these carbon dots are excited by white light. Detailed material characterization has revealed that this tunable emission results from changes in the carbon dots’ chemical composition, dictated by dehydrogenation reactions occurring during carbonization. These significantly alter the nucleation and growth process, resulting in dots with either more oxygen‐containing or nitrogen‐containing groups that ultimately determine their photoluminescence properties, which is in stark contrast to previous observations of carbon dot excitation‐dependent fluorescence. This new ability to synthesize broadband excitable carbon dots with tunable peak emissions opens up many new possibilities, particularly in multimodal sensing, in which multiple analytes and processes could be monitored simultaneously by associating a particular carbon dot emission wavelength to a specific chemical process without the need for tuning the excitation source.  相似文献   

19.
Cysteine‐based chiral optically active carbon dots (CDs) and their effects on cellular energy metabolism, which is vital for essential cellular functions, have been barely reported. A green and effective synthesis strategy for chiral N‐S‐doped CDs (fluorescence quantum yield ca. 41.26 %) based on hydrothermal treatment of l ‐ or d ‐cysteine at as low as 60 °C has been developed. This suggested that cysteine was instable in aqueous solutions and acts as a warning for high‐temperature synthesis of nanomaterials using cysteine as stabilizer. Human bladder cancer T24 cells treated with l ‐CDs showed up‐regulated glycolysis, while d ‐CDs had no similar effects. In contrast, no disturbance to the basal mitochondrial aerobic respiration of T24 cells was caused by either chiral CD.  相似文献   

20.
A method is developed for one-stage incorporation of cadmium-sulfide quantum dots synthesized in the presence of mercaptosuccinic acid into a silica matrix formed from a precursor containing ethylene-glycol residues—tetrakis(2-hydroxyethyl) orthosilica. This precursor has not previously been applied for this purpose. It is more compatible with diverse substances than tetraethoxysilane, which is traditionally used. Moreover, it is advantageous in its unlimited solubility in water; release of ethylene glycol, which does not precipitate quantum dots, rather than alcohol upon hydrolysis; and the feasibility of performing the sol-gel process at any pH value in a range of 2–10 without the addition of acid or alkali and without heating. When the precursor (50 wt %) is added to a dispersion of quantum dots, the system is transformed into a gel in as little as a few minutes. The synthesized hybrid materials are optically transparent. Therewith, the quantum dots incorporated into the silica matrix exhibit luminescence, with their spectral characteristics remaining almost unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号