首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear magnetic resonance (NMR) relaxometry and diffusometry are important tools for the characterization of heterogeneous materials and porous media, with applications including medical imaging, food characterization and oil‐well logging. These methods can be extremely effective in applications where high‐resolution NMR is either unnecessary, impractical, or both, as is the case in the emerging field of portable chemical characterization. Here, we present a proof‐of‐concept experiment demonstrating the use of high‐sensitivity optical magnetometers as detectors for ultra‐low‐field NMR relaxation and diffusion measurements.  相似文献   

2.
3.
4.
5.
6.
Extending the scope of NMR spectroscopy with microcoil probes   总被引:4,自引:0,他引:4  
Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.  相似文献   

7.
Benchtop NMR spectrometers experience a great success for a wide range of applications. However, their performance is highly limited by peak overlaps. Emerging “pure-shift NMR” (PS NMR) methods have been intensively used at high field to enhance the resolution by homodecoupling strategies. Here, different PS methods have been implemented on a compact NMR spectrometer operating at 43 MHz. Among the PS methods, the recent PSYCHE scheme appears more sensitive than Zangger-Sterk (ZS) experiments and offers a substantial resolution improvement as compared to 1D 1H. On the other hand, despite their slightly lower sensitivity, ZS methods are more efficient to reduce broad signals and are more immune to strong couplings. Finally, the classical J-resolved pulse sequence is more efficient to reduce larger signals for bigger-sized molecules. The three approaches appear relevant for benchtop NMR and their combination forms an efficient toolbox to analyze a great diversity of samples.  相似文献   

8.
The analysis of complex mixtures of dissolved molecules is a major challenge, especially for systems that gradually evolve, e. g., in the course of a chemical reaction or in the case of chemical instability. 1D NMR is a fast and non-invasive method suitable for detailed molecular analysis, though of low sensitivity. Moreover, the spectral resolution of proton, the most commonly used and most sensitive stable isotope in NMR, is also quite limited. Spatially encoded (SPEN) experiments aim at creating in one acquisition a 2D data set by simultaneously performing different 1D sub-experiments on different slices of the NMR tube, at the price of an extra loss of sensitivity. Choosing translational diffusion coefficients as the additional dimension (the so-called DOSY approach) helps to recover proton spectra of each molecule in a mixture. The sensitivity limitation of SPEN NMR can, on the other hand, be addressed with hyperpolarization methods. Within hyperpolarization methods, signal amplification by reversible exchange (SABRE), based on parahydrogen, is the cheapest and the easiest one to set up, and allows multi-shot experiments. Here we show that the spectra of a mixture's components at millimolar concentration are resolved in few seconds by combining the SABRE, SPEN and DOSY concepts.  相似文献   

9.
Online monitoring by flow NMR spectroscopy is a powerful approach to study chemical reactions and processes, which can provide mechanistic understanding, and drive optimisations. However, some of the most useful methods for mixture analysis and reaction monitoring are not directly applicable in flow conditions. This is the case of classic diffusion-ordered NMR spectroscopy (DOSY) methods, which can be used to separate the spectral information for mixture's components. We describe a fast and flow-compatible diffusion NMR experiment that makes it possible to collect accurate diffusion data for samples flowing at up to 3 mL/min. We use it to monitor the synthesis of a Schiff base with a flow-tube with a time resolution of approximately 2 minutes. The one-shot flow-compatible diffusion NMR described here open many avenues for reaction monitoring applications.  相似文献   

10.
Diffusion‐ordered multidimensional NMR spectroscopy is a valuable technique for the analysis of complex chemical mixtures. However, this method is very time‐consuming because of the costly sampling of a multidimensional signal. Various sparse sampling techniques have been proposed to accelerate such measurements, but they have always been limited to frequency dimensions of NMR spectra. It is now revealed how sparse sampling can be extended to diffusion dimensions.  相似文献   

11.
A new acquisition : Based on “phase‐shifted mirrored sampling” (PMS) of indirect evolution periods of multi‐dimensional experiments, new acquisition schemes eliminate, without application of a phase correction, dispersive signal components that exacerbate peak identification and shift peak maxima. The resulting enhanced resolution is of particular value for systems with high chemical shift degeneracy.

  相似文献   


12.
13.
14.
This review article focuses on the principles and applications of miniaturized near-infrared (NIR) spectrometers. This technology and its applicability has advanced considerably over the last few years and revolutionized several fields of application. What is particularly remarkable is that the applications have a distinctly diverse nature, ranging from agriculture and the food sector, through to materials science, industry and environmental studies. Unlike a rather uniform design of a mature benchtop FTNIR spectrometer, miniaturized instruments employ diverse technological solutions, which have an impact on their operational characteristics. Continuous progress leads to new instruments appearing on the market. The current focus in analytical NIR spectroscopy is on the evaluation of the devices and associated methods, and to systematic characterization of their performance profiles.  相似文献   

15.
16.
The detection and structural characterization of the components of a mixture is a challenging task. Therefore, the development of a facile and general method that enables both the separation and the structural characterization of the components is desired. Diffusion‐ordered NMR spectroscopy (DOSY) with the aid of a matrix is a promising tool for this purpose. However, because the currently existing matrices only separate limited components, the application of the DOSY technique is restricted. Herein we introduce a new versatile matrix, poly(dimethylsiloxane), which can fully separate many mixtures of different structural types by liquid‐state NMR spectroscopy. With poly(dimethylsiloxane), liquid‐state chromatographic NMR spectroscopy could become a general approach for the structural elucidation of mixtures of compounds.  相似文献   

17.
18.
19.
In addition to the static parameters of the chemical shifts and coupling constants, which serve as a source of knowledge for molecular structure and stereochemistry, an NMR spectrum can frequently furnish dynamic quantities characterizing relaxation and exchange phenomena. The information about nuclear switching processes has proved to be particularly useful in practice for the detection of internal molecular motions and for the estimation or determination of the corresponding energy barriers. A plethora of studies of this nature has in the past been performed on simple proton spectra. Methodological developments of recent years have led to a significant reduction of the effort required for the quantitative dynamic evaluation of NMR spectra arising from complex spin systems or involving other nuclei. In many cases it has, moreover, become possible to extract detailed mechanistic information inaccessible by other means. The practical execution of such analyses will be explained and illustrated by a selected number of applications.  相似文献   

20.
Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio‐frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号