首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel hydrogen peroxide (H2O2) sensor was fabricated by using a submonolayer of 3‐mercaptopropionic acid (3‐MPA) adsorbed on a polycrystalline gold electrode further reacted with poly(amidoamine) (PAMAM) dendrimer (generation 4.0) to obtain a film on which Prussian Blue (PB) was later coordinated to afford a mixed and stable electrocatalytic layer for H2O2 reduction. On the basis of the electrochemical behaviors, atomic force microscopy (AFM) and X‐ray photoelectron spectra (XPS), it is suggested that the PB molecules are located within the dendritic structure of the surface attached PAMAM dendrimers. It was found that the PB/PAMAM/3‐MPA/Au modified electrode showed an excellent electrocatalytic activity for H2O2 reduction. The effects of applied potential and pH of solution upon the response of the modified electrode were investigated for an optimum analytical performance. Even in the presence of dissolved oxygen, the sensor exhibited highly sensitive and rapid response to H2O2. The steady‐state cathodic current responses of the modified electrode obtained at ?0.20 V (vs. SCE) in air‐saturated 0.1 mol L?1 phosphate buffer solution (PBS, pH 6.50) showed a linear relationship to H2O2 concentration ranging from 1.2×10?6 mol L?1 to 6.5×10?4 mol L?1 with a detection limit of 3.1×10?7 mol L?1. Performance of the electrode was evaluated with respected to possible interferences such as ascorbic acid and uric acid etc. The selectivity, stability, and reproducibility of the modified electrode were satisfactory.  相似文献   

2.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

3.
The mechanism of catalytic reduction of peroxydisulfate on the palladized aluminum electrode modified by Prussian blue (PB/Pd‐Al) was studied. The charge transfer‐rate limiting step as well as overall reduction reaction of S2O82? is found to be a one‐electron and two‐electron abstraction respectively. The modified electrode is exploited for the hydrodynamic amperometry of peroxydisulfate. It is found that the calibration graph is linear in the S2O82?concentration range 5×10?6–1.5×10?3 mol L?1. The detection limit of the method was 2.4×10?6 mol L?1 S2O82. The method was successfully used for the determination of S2O82? in decolorizing powders  相似文献   

4.
Prussian blue (PB) modified titanate nanotubes (PB‐TiNT) have been synthesized by the reaction of Fe2+‐modified TiNT with hexacyanoferrate(III) ions. The rate constant for heterogeneous catalytic reaction between PB‐TiNT and H2O2 was found to be k=2×104 dm3 mol?1 s?1, which is an order of magnitude higher than the values of k reported for conventionally prepared, electrochemically deposited PB films. On the PB‐TiNT modified electrode with subnanomolar surface concentration of PB (Γ(PB)=2.8×10?11 mol/cm2), a stable, reproducible and linear response towards H2O2 was obtained in the concentration range 0.02–4 mM, with the sensitivity of 0.10 AM?1 cm?2 at ?150 mV.  相似文献   

5.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

6.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

7.
磁性普鲁士蓝纳米颗粒的合成及其化学修饰电极的制作   总被引:6,自引:0,他引:6  
李建平  袁永海 《化学学报》2006,64(3):261-265
利用FeSO4与FeCl3合成了超细磁性Fe3O4纳米颗粒, 并进一步利用该纳米颗粒与铁氰酸钾在酸性溶液(pH~2)中的化学反应成功制备了一种新型的磁性普鲁士蓝纳米颗粒; 研究了该磁性颗粒的磁学性能, 通过磁力将其修饰于固体石蜡碳糊电极表面制成了化学修饰电极, 考察了该电极对过氧化氢的电催化还原及对水合肼的电催化氧化特性. 该化学修饰电极可对过氧化氢和水合肼进行测定, 线性范围分别为过氧化氢2×10-6~5×10-3 mol/L, 水合肼7.2×10-7~3.6×10-4 mol/L. 利用磁性普鲁士蓝纳米颗粒制得的修饰电极具有催化性能高、稳定性好、表面易更新等优点.  相似文献   

8.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

9.
We used a new reactive species OH? to fabricate active horseradish peroxidase (HRP) micropatterns with a high resolution by scanning electrochemical microscopy (SECM) coupled with a carbon fiber disk electrode as the SECM tip. In this method, except for active HRP micropatterns predesigned other regions on a HRP‐immobilized substrate were deactivated by OH? generated at the tip held at ?1.7 V in 1.0 mol/L KCl containing 2.0×10?3 mol/L benzoquinone (BQ) (pH 8.0). The feedback mode of SECM with a tip potential of ?0.2 V was used to characterize the active HRP micropatterns in 1.0 mol/L KCl containing 2.0×10?3 mol/L BQ and 2.0×10?3 mol/L H2O2.  相似文献   

10.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

11.
Graphene/Fe3O4 nanocomposite was prepared for the immobilization of hemoglobin (Hb) to improve the electron transfer between Hb and glass carbon electrode (GCE). The characterization of nanocomposites was described by transmission electron microscopy, Fourier transform infrared, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemistry of Hb on the graphene/Fe3O4-based GCE was investigated by cyclic voltammetry and amperometric measurement. The modified electrode showed a wide linear range from 0.25 μmol/L to 1.7 mmol/L with a correlation coefficient of 0.9967. The detection limit of the H2O2 biosensor was estimated at 6.0?×?10?6?mol/L at a signal-to-noise ratio of 3.  相似文献   

12.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing.  相似文献   

13.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

14.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

15.
《Electroanalysis》2002,14(23):1674-1678
Capillary zone electrophoresis with catalysis‐electrochemical detection has been developed and applied to determining horseradish peroxidase (HRP) at zeptomole levels. In this method, an on‐line enzyme catalysis reactor with a reaction capillary was designed. Isoenzymes of HRP were separated by capillary zone electrophoresis, and then they catalyzed the enzyme substrate 3,3′,5,5′‐tetramethylbenzide (TMB(Red)) and H2O2 in the reaction capillary. The reaction product, TMB(Ox), could be determined using amperometric detection on a carbon fiber microdisk bundle electrode at the outlet of the reaction capillary. Because of enzyme amplification, a significant amount of TMB(Ox) could be produced for detection. Therefore, the limit of detection (LOD) of HRP is very low. The optimum conditions of the method are 1.5×10?2 mol/L borate (pH 7.4) for the run buffer, 2×10?3 mol/L for the concentration of H2O2, 2×10?4 mol/L TMB(Red)+2.0×10?2 mol/L citrate‐phosphate (pH 5.0) for the substrate solution, 40 cm for the liquid pressure height, 20 kV for the separation voltage, 100 mV for the detection potential. HRP could be measured with a detection limit of 4.8×10?12 mol/L or 47.5 zmol (S/N=3). The linear range is from 2.40×10?11 to 2.40×10?8 mol/L. Using this method, commercial HRP was measured at zeptomole within ten minutes.  相似文献   

16.
A new sensor was fabricated by MIP synthesized on the surface of magnetic nickel(II) oxide (NiO) nanoparticles which based on the oxidation current change of H2O2. Chlortoluron was selected as template which can be detected indirectly by the decrease of the H2O2 oxidation current on the NiO nanoparticle‐modified GCE caused by the blocking access after rebinding. A high sensitivity was obtained because of the high catalytic effect of NiO nanoparticles on H2O2 oxidation. Chlortoluron was determined from 1.0×10?8/L to 1.0×10?4 mol/L, with a detection limit of 2.4×10?9 mol/L. The proposed method combines the high sensitivity of the catalytic effect and the high selectivity of the MIP technique. Water samples were assayed using the MIP sensor, and recoveries of 96.9 % to 104.7 % were obtained.  相似文献   

17.
王树青  陈峻  林祥钦 《中国化学》2004,22(4):360-364
IntroductionAmperometricbiosensorofhydrogenperoxideisofpracticalimportancebecauseofitswideapplicationsinchemical,biological,clinical,environmentalandmanyotherfields.Forimprovementofsensor抯quality,vari-ouskindsofchemicalmodificationmethodshavebeendevelopedforreducingredoxoverpotentialsofH2O2atelectrodesurfaces,increasingthedetectionsensitivity,linearrange,stabilityandlivetime.Ithasbeenshownthattheuseofsub-micrometersizedmetalparticlessuchasPt-blackcansignificantlyimprovethequalityofthebiosens…  相似文献   

18.
A new strategy for trace analysis was proposed by preparing a molecularly imprinted polymer (MIP) sensor. The template molecules of clopyralid were determined based on “gate-controlled” electrochemiluminescence (ECL) measurement. A dense polymer film was electropolymerized on an electrode surface to fabricate the MIP–ECL sensor. The process of template elution and rebinding acted as a gate to control the flux of probes, which pass through the cavities and react on the electrode surface. ECL measurement was conducted in the luminol–H2O2 system. A linear relationship between ECL intensity and clopyralid concentrations in the range of 1?×?10?9 mol/L to 8?×?10?7 mol/L exists, and the detection limit was 3.7?×?10?10 mol/L. The prepared sensor was used to detect clopyralid in vegetables. Recoveries of 97.9 % to 102.9 % were obtained. The sensor showed highly selective recognition, high sensitivity, good stability, and reproducibility for clopyralid detection.  相似文献   

19.
A novel NH2+ ion implantation‐modified indium tin oxide (NH2/ITO) electrode was prepared. Acid‐pretreated, negatively charged MWNTs were firstly modified on the surface of NH2+ ion implantation electrode, then, positively charged Mb was adsorbed onto MWNTs films by electrostatic interaction. The assembly of MWNTs and Mb was characterized with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Mb showed a couple of quasireversible cyclic voltammetry peaks in pH 7.0 phosphate buffer solution (PBS). The apparent surface concentration of Mb at the electrode surface was 1.06×10?9 mol cm?2. The Mb/MWNTs/NH2/ITO electrode also gave an improved electrocatalytic activity towards the reduction of hydrogen peroxide. The catalysis currents increased linearly to the H2O2 concentration in a wide range from 9×10?7 to 9.2×10?5 M with a correlation coefficient of 0.999. The detection limit was 9.0×10?7 M. The experiment results demonstrated that the modified electrode provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

20.
《Electroanalysis》2003,15(17):1403-1409
The effect of F? on the modified films of lead dioxide in morphology and structure was studied. The results obtained by cyclic voltammetry (CV), X‐diffractometer (XRD) and scanning electron microscope (SEM) techniques indicated that F? could change the magnitude of lead dioxide crystal grain and the preferred crystallizing orientation on the substrate surface, even though it didn't change the basic structure of PbO2. When the modified electrode was applied as an analytical sensor to determine phenolic compounds, the linearity was in the range of 2×10?5 – 1×10?3 mol/L and the detection limit was 2.5×10?6 mol/L. It was all found that the stability and reproducibility of the oxide‐modified electrodes were improved by additional F?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号