首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we report on the synthesis and structural characterization of a representative range of novel heterodinuclear bridging rhodium and iridium borylene complexes. The iridium borylene complexes feature an unusual coordination mode of the borylene ligand. Furthermore, the first instance of a heterodinuclear‐bridged borylene compound containing a chromium atom in the three‐membered ring is reported.  相似文献   

2.
A set of bimetallic complexes based on iridium and rhodium with bis(diphenylphosphino)methane, bis(di-iso-propylphosphino)methane, diphenyl-2-pyridylphosphine and 2-(di-iso-propylphosphino)imidazole bridging ligands was prepared. The complexes were characterized by NMR and IR spectroscopy and studied quantum-chemically using DFT methods. The bimetallic systems succeeded in catalytic hydrodefluorination reactions of lower fluorinated aryl fluorides using molecular hydrogen and sodium tert-butoxide as a base. Effects of (i) ligand variation, (ii) mono- vs bimetallic nuclearity, and (iii) Ir vs Rh metal identity were studied and rationalized en route to achieve an effective hydrodefluorination.  相似文献   

3.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

4.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

5.
6.
This Review focuses on the development of metal aminoboranes; it discusses their synthesis, structure, chemical characterization, and applications. The lightweight nature of the molecules, the simplified procedures for the synthesis of the target compounds, the reversibility of hydrogen storage and dehydrogenation, and in‐depth research on the mechanism of the thermal decomposition are also discussed. A major challenge that still remains is how to combine the advantages of the compounds to produce a material that is not only able to release and absorb hydrogen under atmospheric conditions, but is also lightweight with a stable molecular structure. Finally, some future trends and perspectives in these research areas will be outlined.  相似文献   

7.
8.
1,3‐N,O‐chelated complexes of RhI and IrI cooperatively and reversibly stabilized the B?H bond of HBCy2 to afford six‐membered metallaheterocycles (M=Rh ( 7 ) or Ir ( 8 )) having a δ‐[M]???H‐B agostic interaction. Treatment of these Shimoi‐type borane adducts 7 or 8 with both an aldehyde and an alkene resulted in chemoselective aldehyde hydroboration and reformation of the 1,3‐N,O‐chelated starting material. The observed chemoselectivity is inverted from that of free HBCy2, which is selective for alkene hydroboration.  相似文献   

9.
Direct ion exchange of cyclometalated iridium(III) and tris‐2,2′‐bipyridyl rhodium(III) complexes, of which the former acts as a photosensitizer and the latter as a proton reduction catalyst, within a macroreticular acidic resin has been accomplished with the aim of developing a photocatalyst for H2 production under visible‐light irradiation. Ir LIII‐edge and Rh K‐edge X‐ray absorption fine structure (XAFS) measurements suggest that the Ir and Rh complexes are easily accommodated in the macroreticular space without considerable structural changes. The photoluminescence emission of the exchanged Ir complex due to a triplet ligand charge‐transfer (3LC) and metal‐to‐ligand charge‐transfer (3MLCT) transition near 550 nm decreases with increasing the amount of the Rh complex, thus suggesting the occurrence of an electron transfer from Ir to Rh. The Ir‐Rh/resin catalyst behaves as a heterogeneous photocatalyst capable of both visible‐light sensitization and H2 production in an aqueous medium in the absence of an electron mediator. The photocatalytic activitity is strongly dependent on the amount of the components and reaches a maximum at a molar ratio of 2:1 of Ir/Rh complexes. Moreover, leaching and agglomeration of the active metal complexes are not observed, and the recovered photocatalyst can be recycled without loss in catalytic activity.  相似文献   

10.
Reaction of aminoboranes H2B=NR2 (R=iPr or Cy) with the cationic Cp*IrIII phosphoramidate complex [IrCp*{κ2‐N,O‐Xyl(N)P(O)(OEt)2}][BArF4] generates the aminoborane complexes [IrCp*(H){κ1N‐η2‐HB‐Xyl(N)P(OBHNR2)(OEt)2}][BArF4] (R=iPr or Cy) in which coordination of a P=O bond with boron weakens the B=N multiple bond. For these complexes, solution‐ and solid‐state, as well as DFT computational techniques, have been employed to substantiate B?N bond rotation of the coordinated aminoborane.  相似文献   

11.
12.
The lithium salts of anionic N-heterocyclic thiones and selones [{(WCA-IDipp)E}Li(toluene)] ( 1 : E=S; 2 : E=Se; WCA=B(C6F5)3, IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene), which contain a weakly coordinating anionic (WCA) borate moiety in the imidazole backbone were reacted with Me3SiCl, to furnish the silylated adducts (WCA-IDipp)ESiMe3 ( 3 : E=S; 4 : E=Se). The reaction of the latter with [(η5-C5Me5)MCl2]2 (M=Rh, Ir) afforded the rhodium(III) and iridium(III) half-sandwich complexes [{(WCA-IDipp)E}MCl(η5-C5Me5)] ( 5 – 8 ). The direct reaction of the lithium salts 1 and 2 with a half or a full equivalent of [M(COD)Cl]2 (M=Rh, Ir) afforded the monometallic complexes [{(WCA-IDipp)E}M(COD)] ( 9 – 12 ) or the bimetallic complexes [μ2-{(WCA-IDipp)E}M2(COD)2(μ2-Cl)] ( 13 – 16 ), respectively. The bonding situation in these complexes has been investigated by means of density functional theory (DFT) calculations, revealing thiolate or selenolate ligand character with negligible metal-chalcogen π-interaction.  相似文献   

13.
Synthesis, characterization and catalytic activity of cyclometalated iridium complexes with a bidentate POC ligand is presented. Metalation of POC-H (di-tert-butyl(phenoxy)phosphane) with [Ir(COD)Cl]2 proceeded rapidly at room temperature and afforded mixture of (POC)(POC-H)IrHCl ( 1 a ) and (POC)(COD)IrHCl ( 1 b ), from which complexes (POC)(L)IrHCl where L=PPh3 ( 1 c ), bipyridine ( 1 d ) and [2,2′-bipyridine]-6,6′-diol ( 1 e ) were prepared through ligand exchange. The compounds were tested in acceptorless dehydrogenation of 1-phenylethanol and transfer dehydrogenation of ethanol in a context of comparison with pincer counterparts (POCOP)IrHCl and (PCN)IrHCl. An attempt to prepare a dihydride complex from 1 e led to dimeric complex [(POC)(bipy-diol−)IrH]2 ( 3 ) that could explain the low activity of 1 e . DFT studies provided insight into POC-H vs POCOP-H metalation mechanism.  相似文献   

14.
Experimental and theoretical studies on equilibria between iridium hydride alkylidene structures, [(TpMe2)Ir(H){?C(CH2R)ArO }] (TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate; R=H, Me; Ar=substituted C6H4 group), and their corresponding hydride olefin isomers, [(TpMe2)Ir(H){R(H)C? C(H)OAr}], have been carried out. Compounds of these types are obtained either by reaction of the unsaturated fragment [(TpMe2)Ir(C6H5)2] with o‐C6H4(OH)CH2R, or with the substituted anisoles 2,6‐Me2C6H3OMe, 2,4,6‐Me3C6H2OMe, and 4‐Br‐2,6‐Me2C6H2OMe. The reactions with the substituted anisoles require not only multiple C? H bond activation but also cleavage of the Me? OAr bond and the reversible formation of a C? C bond (as revealed by 13C labeling studies). Equilibria between the two tautomeric structures of these complexes were achieved by prolonged heating at temperatures between 100 and 140 °C, with interconversion of isomeric complexes requiring inversion of the metal configuration, as well as the expected migratory insertion and hydrogen‐elimination reactions. This proposal is supported by a detailed computational exploration of the mechanism at the quantum mechanics (QM) level in the real system. For all compounds investigated, the equilibria favor the alkylidene structure over the olefinic isomer by a factor of between approximately 1 and 25. Calculations demonstrate that the main reason for this preference is the strong Ir–carbene interactions in the carbene isomers, rather than steric destabilization of the olefinic tautomers.  相似文献   

15.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   

16.
Pyrrole‐modified subporphyrins bearing a non‐pyrrolic cyclic unit, subporpholactone, subporpholactam, and imidazolosubporphyrin were newly synthesized. They show subporphyrin‐like absorption and fluorescence spectra that are red‐shifted in the order of subporpholactam<subporpholactone<imidazolosubporphyrin. Metalation of the imidazolosubporphyrin with (pentamethylcyclopentadienyl)iridium(III) dichloride dimer gave a complex, in which the iridium(III) atom was attached at the peripheral nitrogen atom of the imidazole moiety and the ortho‐position of the meso‐phenyl group. Reaction of this complex with diphenylacetylene gave different products depending on the used additive; a phenyl‐rearranged product in the presence of NaBArF4 (ArF=3,5‐bis(trifluoromethyl)phenyl) and two isomeric carbene complexes in the presence of KPF6.  相似文献   

17.
18.
Catalytic, enantioselective synthesis of stereogenic silicon compounds remains a challenge. Herein, we report a rhodium-catalyzed regio- and enantio-selective intermolecular hydrosilylation of alkene with prochiral dihydrosilane. This new method features a simple catalytic system, mild reaction conditions and a wide functional group tolerance.  相似文献   

19.
20.
New iridium tetrazolate complexes containing o‐, m‐, or p‐carboranyl substitution in different positions of a phenylpyridine ligand have been prepared. The carborane isomers and the effect of their substitution position in the tuning of optical properties have been examined. The neutral complexes with the carboranyl substituent on the phenyl ring in meta position relative to the metal exhibit redshifted emission bands in contrast to blueshifts for those with carboranyl in para position. All cationic complexes display evidently blueshifted dual‐peak emission compared with the carborane‐free complex (c‐ TZ ) with a broad single‐peak emission. Introduction of carborane leads to a blueshift over 70 nm relative to c‐ TZ . Carboranes also significantly improve phosphorescence efficiency (ΦP) and lifetime (τ), that is, ΦP=0.64 versus 0.21 (c‐ TZ ) and τ=880 ns versus 241 ns (c‐ TZ ). The unique hydrophilic nido‐carborane‐based IrIII complex nidoo‐ 1 shows the largest phosphorescence efficiency (abs ΦP=0.57) among known water‐soluble iridium complexes, long emission lifetime (τ=4.38 μs), as well as varying emission efficiency and lifetime with O2 content in aqueous solution. Therefore, nidoo‐ 1 has been used as an excellent oxygen‐sensitive phosphor for intracellular O2 sensing and hypoxia imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号