首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
MOF on MOF: Core–shell porous coordination polymer (PCP) crystals are fabricated at the single‐crystal level by epitaxial growth in solution. Synchrotron X‐ray diffraction measurements unveiled the structural relationship between the shell crystal and the core crystal, where in‐plane rotational epitaxial growth compensates the difference in lattice constant.

  相似文献   


3.
A porous copper coordination framework grew epitaxially as a single crystal on the surface of a single crystal of a porous zinc coordination framework, as described by S. Kitagawa and co‐workers in their Communication on page 1766 ff. The picture shows the structural relationship between the copper and zinc frameworks, which has been unveiled by synchrotron surface X‐ray diffraction measurements; in‐plane rotational epitaxial growth compensates for the different lattice constants of the two crystals.

  相似文献   


4.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   

5.
Making connections : A hydroxy‐centered trinuclear nickel cluster has been employed to construct a highly connected, highly symmetric framework with a uninodal nine‐connected topology. An array of triakis tetrahedra leads to a biporous intersecting‐channel system (see picture).

  相似文献   


6.
An unusual 1D‐to‐3D transformation of a coordination polymer based on organic linkers containing highly polar push–pull π‐conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5‐bis{4‐[1‐(4‐nitrophenyl)pyrrolidin‐2‐yl]butoxy}terephthalic acid, which possesses highly polar (4‐nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent‐stabilized 1D coordination polymer into an insoluble, metal–organic framework (MOF)‐like 3D coordination polymer. The coordination polymer exhibits good film‐forming ability, and the MOF‐like films are insoluble in conventional organic solvents.  相似文献   

7.
Porous coordination polymers (CPs) with partially uncoordinated pyridyl rings based on rationally designed polypyridyl linkers are appealing from the point of view of their application as nucleophilic catalysts. A D2d‐symmetric tetradentate organic linker L , that is, 2,2′,6,6′‐tetramethoxy‐3,3′,5,5′‐tetrakis(4‐pyridyl)biphenyl, was designed and synthesized for metal‐assisted self‐assembly aimed at porous CPs. Depending on the nature of the metal ion and the counter anion, the ligand L is found to function as a 3‐ or 4‐connecting building block leading to porous CPs of diverse topologies. The reaction of L with Zn(NO3)2 and Cd(NO3)2 yields porous 2 D CPs of “ fes ” topology, in which the tetrapyridyl linker L serves as a 3‐connecting unit with its free pyridyl rings well exposed into the pores. The functional utility of these porous CPs containing uncoordinated pyridyl rings is demonstrated by employing them as efficient heterogeneous nucleophilic catalysts for acetylation of a number of phenols with varying electronic properties and reactivities.  相似文献   

8.
Herein, the synthesis, crystal structure, and full characterization of a new soft porous coordination polymer (PCP) of ([Cu2(dmcapz)2(OH2)]DMF1.5)n ( 1 ) formulation, which is easily obtained in the reaction of CuX2 (X=Cl, NO3) salts with 3,5‐dimethyl‐4‐carboxypyrazole (H2dmcapz) is present. Compound 1 shows a copper(II) dinuclear secondary building unit (SBU), which is supported by two pyrazolate bridges and an unprecedented H2O bridge. The dinuclear SBUs are further bridged by the carboxylate ligands to build a diamondoid porous network. The structural transformations taking place in 1 framework upon guest removal/uptake has been studied in detail. Indeed, the removal of the bridging water molecules gives rise to a metastable evacuated phase ( 1 b ) that transforms into an extremely stable porous material ( 1 c ) after freezing at liquid‐nitrogen temperature. The soaking of 1 c into water allows the complete and instantaneous recover of the water‐exchanged material ( 1 a′ ). Remarkably, 1 b and 1 c materials possess structural bistability, which results in the switchable adsorptive functions. Therefore, the gas‐adsorption properties of both materials have been studied by means of single‐component gas adsorption isotherms as well as by variable‐temperature pulse‐gas chromatography. Both materials present permanent porosity and selective gas‐adsorption properties towards a variety of gases and vapors of environmental and industrial interest. Moreover, the flexible nature of the coordination network and the presence of highly active convergent open metal sites confer on these materials intriguing gas‐adsorption properties with guest‐triggered framework‐breathing phenomena being observed. The plasticity of CuII metal center and its ability to form stable complexes with different coordination numbers is at the origin of the structural transformations and the selective‐adsorption properties of the studied materials.  相似文献   

9.
The interplay of guest encapsulation and release mechanisms in nanoscale metal–organic vehicles and its effect on the drug‐delivery kinetics of these materials were investigated through a new multidisciplinary approach. Two rationally‐designed molecular guests were synthesized, which consist of a red‐fluorescent benzophenoxazine dye covalently tethered to a coordinating catechol group and a protected, non‐coordinating catechol moiety. This allowed loading of the guests into compositionally and structurally equivalent coordination polymer particles through distinct encapsulation mechanisms: coordination and mechanical entrapment. The two types of particles delivered their fluorescent cargo with remarkably different kinetic profiles, which could be satisfactorily modeled considering degradation‐ and diffusion‐controlled release processes. This demonstrates that careful selection of the method of guest incorporation into coordination polymer nanoparticles allows selective tuning of the rate of drug delivery from these materials and, therefore, of the time window of action of the encapsulated therapeutic agents.  相似文献   

10.
To establish a strategy for designing porous coordination polymers (PCPs) for ammonia capture, the first systematic study on the stability of PCPs against ammonia was conducted. Various types of PCPs were investigated by comparing their powder XRD patterns before and after treatment with ammonia. Among the PCPs tested, ZIF‐8, MIL‐53(Al), Al‐BTB, MOF‐76(M) (M=Y or Yb), MIL‐101(Cr), and MOF‐74(Mg) were stable up to 350 °C under an ammonia atmosphere at ambient pressure. The origin of the stability of PCPs is discussed from the viewpoint of their components, metal cations, and organic linkers. Furthermore, adsorption isotherm measurements show that the adsorptive behavior of PCPs is independent of their stability.  相似文献   

11.
12.
Design and synthesis of porous solids employing both reversible coordination chemistry and reversible covalent bond formation is described. The combination of two different linkage modes in a single material presents a link between two distinct classes of porous materials as exemplified by metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). This strategy, in addition to being a compelling material‐discovery method, also offers a platform for developing a fundamental understanding of the factors influencing the competing modes of assembly. We also demonstrate that even temporary formation of reversible connections between components may be leveraged to make new phases thus offering design routes to polymorphic frameworks. Moreover, this approach has the striking potential of providing a rich landscape of structurally complex materials from commercially available or readily accessible feedstocks.  相似文献   

13.
14.
15.
Sphere of destiny : Metal–organic spheres with remarkable encapsulation properties are readily prepared and their ability to host a wide range of guest species, including nanoparticles, fluorescent dyes, and quantum dots, is demonstrated. Both the metal–organic spheres and the encapsulated species maintain their fluorescent or magnetic properties, highlighting the importance of these systems as new multifunctional materials.

  相似文献   


16.
17.
Proton‐conducting materials are an important component of fuel cells. Development of new types of proton‐conducting materials is one of the most important issues in fuel‐cell technology. Herein, we present newly developed proton‐conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal–organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton‐conducting materials and their unique proton‐conduction properties are discussed.  相似文献   

18.
Surface coordination networks formed by co‐adsorption of metal atoms and organic ligands have interesting properties, for example regarding catalysis and data storage. Surface coordination networks studied to date have typically been based on single metal atom centers. The formation of a novel surface coordination network is now demonstrated that is based on network nodes in the form of clusters consisting of three Cu adatoms. The network forms by deposition of tetrahydroxybenzene (THB) on Cu(111) under UHV conditions. As shown from a combination of scanning tunneling microscopy, X‐ray photoelectron spectroscopy, and density functional theory calculations, all four hydroxy groups of THB dehydrogenate upon thermal activation at 440 K. This highly reactive ligand binds to Cu adatom trimers, which are resolved by high‐resolution STM. The network creates an ordered array of mono‐dispersed metal clusters constituting a two‐dimensional analogue of metal–organic frameworks.  相似文献   

19.
A positively charged lamellar coordination polymer based on a flexible triphosphonic acid linker is reported. [Gd(H4nmp)(H2O)2]Cl ? 2 H2O ( 1 ) [H6nmp=nitrilotris(methylenephosphonic acid)] was obtained by a one‐pot approach by using water as a green solvent and by forcing the inclusion of additional acid sites by employing HCl in the synthesis. Compound 1 acts as a versatile heterogeneous acid catalyst with outstanding activity in organic reactions such as alcoholysis of styrene oxide, acetalization of benzaldehyde and cyclohexanaldehyde and ketalization of cyclohexanone. For all reaction systems, very high conversions were reached (92–97 %) in only 15–30 min under mild conditions (35 °C, atmospheric pressure). The coordination polymer exhibits a protonic conductivity of 1.23×10?5 S cm?1 at 98 % relative humidity and 40 °C.  相似文献   

20.
In this Minireview, we discuss the fundamental chemistry of soft porous crystals (SPCs) by characterizing their common structural features and the resulting structural softness and transitions. In particular, we focus on the recently emerging properties based on metastable transitions and those arising from local dynamics. By comparing the resulting adsorption properties to those of commonly applied rigid adsorbents, we highlight the potential of SPCs to revolutionize adsorption‐based technologies, considering our current understanding of the thermodynamic and kinetic aspects. We provide brief outlines for the experimental and computational characterization of such phenomena and offer an outlook toward next‐generation SPCs likely to be discovered in the next decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号