共查询到20条相似文献,搜索用时 15 毫秒
1.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.
2.
Mahima Goel Dr. Manickam Jayakannan 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(38):11987-11993
Self‐organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self‐assembly in π‐conjugated molecules based on custom‐designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single‐crystal X‐ray structures were resolved for these OPV synthons and the existence of long‐range multiple‐arm CH/π interactions was revealed in the crystal lattices. Alignment of these π‐conjugated OPVs in the solid state was found to be crucial in producing either right‐handed herringbone packing in the crystal or left‐handed helices in the liquid‐crystalline mesophase. Pitch‐ and roll‐angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self‐assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π‐conjugated materials. 相似文献
3.
Sophia J. Makowski Pia Köstler Prof. Dr. Wolfgang Schnick 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(11):3248-3257
Self‐assembly of melem C6N7(NH2)3 in hot aqueous solution leads to the formation of hydrogen‐bonded, hexagonal rosettes of melem units surrounding infinite channels with a diameter of 8.9 Å. The channels are filled with strongly disordered water molecules, which are bound to the melem network through hydrogen bonds. Single‐crystals of melem hydrate C6N7(NH2)3 ? xH2O (x≈2.3) were obtained by hydrothermal treatment of melem at 200 °C and the crystal structure (R $\bar 3$ c, a=2879.0(4), c=664.01(13) pm, V=4766.4(13)×106 pm3, Z=18) was elucidated by single‐crystal X‐ray diffraction. With respect to the structural similarity to the well‐known adduct between melamine and cyanuric acid, the composition of the obtained product was further analyzed by solid‐state NMR spectroscopy. Hydrolysis of melem to cyameluric acid during syntheses at elevated temperatures could thus be ruled out. DTA/TG studies revealed that, during heating of melem hydrate, water molecules can be removed from the channels of the structure to a large extent. The solvent‐free framework is stable up to 430 °C without transforming into the denser structure of anhydrous melem. Dehydrated melem hydrate was further characterized by solid‐state NMR spectroscopy, powder X‐ray diffraction, and sorption measurements to investigate structural changes induced by the removal of water from the channels. During dehydration, the hexagonal, layered arrangement of melem units is maintained whereas the formation of additional hydrogen bonds between melem entities requires the stacking mode of hexagonal layers to be altered. It is assumed that layers are shifted perpendicular to the direction of the channels, thereby making them inaccessible for guest molecules. 相似文献
4.
A Supramolecular Sorting Hat: Stereocontrol in Metal–Ligand Self‐Assembly by Complementary Hydrogen Bonding 下载免费PDF全文
Michael C. Young Lauren R. Holloway Amber M. Johnson Prof. Richard J. Hooley 《Angewandte Chemie (International ed. in English)》2014,53(37):9832-9836
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds. 相似文献
5.
6.
7.
8.
Self‐Assembly of a Highly Organized,Hexameric Supramolecular Architecture: Formation,Structure and Properties 下载免费PDF全文
Dr. Gaël Schaeffer Dr. Olaf Fuhr Prof. Dieter Fenske Prof. Jean‐Marie Lehn 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(1):179-186
Two derivatives, 3 L and 9 L , of a ditopic, multiply hydrogen‐bonding molecule, known for more than a decade, have been found, in the solid state as well as in solvents of low polarity at room temperature, to exist not as monomers, but to undergo a remarkable self‐assembly into a complex supramolecular species. The solid‐state molecular structure of 3 L , determined by single‐crystal X‐ray crystallography, revealed that it forms a highly organized hexameric entity 3 L 6 with a capsular shape, resulting from the interlocking of two sets of three monomolecular components, linked through hydrogen‐bonding interactions. The complicated 1H NMR spectra observed in o‐dichlorobenzene (o‐DCB) for 3 L and 9 L are consistent with the presence of a hexamer of D3 symmetry in both cases. DOSY measurements confirm the hexameric constitution in solution. In contrast, in a hydrogen‐bond‐disrupting solvent, such as DMSO, the 1H NMR spectra are very simple and consistent with the presence of isolated monomers only. Extensive temperature‐dependent 1H NMR studies in o‐DCB showed that the L 6 species dissociated progressively into the monomeric unit on increasing th temperature, up to complete dissociation at about 90 °C. The coexistence of the hexamer and the monomer indicated that exchange was slow on the NMR timescale. Remarkably, no species other than hexamer and monomer were detected in the equilibrating mixtures. The relative amounts of each entity showed a reversible sigmoidal variation with temperature, indicating that the assembly proceeded with positive cooperativity. A full thermodynamic analysis has been applied to the data. 相似文献
9.
Formation of One‐Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxaline‐Fused [7]Carbohelicenes in the Crystal 下载免费PDF全文
Dr. Hayato Sakai Sho Shinto Prof. Yasuyuki Araki Prof. Takehiko Wada Prof. Tomo Sakanoue Prof. Taishi Takenobu Prof. Taku Hasobe 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(32):10099-10109
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH ??? N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units. 相似文献
10.
Hydrogen Bonding Induced Supramolecular Self‐Assembly of Linear Doubly Discotic Triad Supermolecules
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell. 相似文献
11.
Hierarchical Self‐Assembly of Supramolecular Hydrophobic Metallacycles into Ordered Nanostructures 下载免费PDF全文
Jing Zhang Dr. Riccardo Marega Li‐Jun Chen Nai‐Wei Wu Xing‐Dong Xu Prof. Dr. David C. Muddiman Prof. Dr. Davide Bonifazi Prof. Dr. Hai‐Bo Yang 《化学:亚洲杂志》2014,9(10):2928-2936
We describe herein the hierarchical self‐assembly of discrete supramolecular metallacycles into ordered fibers or spherical particles through multiple noncovalent interactions. A new series of well‐defined metallacycles decorated with long alkyl chains were obtained through metal–ligand interactions, which were capable of aggregating into ordered fibroid or spherical nanostructures on the surface, mostly driven by hydrophobic interactions. In‐depth studies indicated that the morphology diversity was originated from the structural information encoded in the metallacycles, including the number of alkyl chains and their spatial orientation. Interestingly, the morphology of the metallacycle aggregates could be tuned by changing the solvent polarity. These findings are of special significance since they provide a simple yet highly controllable approach to prepare ordered and tunable nanostructures from small building blocks by means of hierarchical self‐assembly. 相似文献
12.
Yuliya Rudzevich Dr. Valentyn Rudzevich Dr. Fabian Klautzsch Christoph A. Schalley Prof. Dr. Volker Böhmer Dr. 《Angewandte Chemie (International ed. in English)》2009,48(21):3867-3871
Size and shape do matter : When dimerized in nonpolar solvents, an equimolar mixture of eleven tetra‐urea calix[4]arenes with different wide‐rim substituents self‐sorts into only six out of 35 different homo‐ and heterodimers (see picture). Since the calixarene scaffold and the four urea units are the same in all cases, the self‐sorting process is driven only by the cooperative action of steric requirements and stoichiometry.
13.
A triblock copolymer containing the complementary hydrogen bonding recognition pair ureidoguanosine–diaminonaphthyridine (UG–DAN) as pendant functional groups is synthesized using ring‐opening metathesis polymerization (ROMP). The norbornene‐based DAN monomer is shown to allow for a controlled polymerization when polymerized in the presence of a modified‐UG molecule that serves as a protecting group, subsequently allowing for the fabrication of functionalized triblock copolymers. The self‐assembly of the copolymers was characterized using dynamic light scattering and 1H NMR spectroscopy. It is demonstrated that the polymers self‐assemble via complementary hydrogen bonding motifs even at low dilutions, indicating intramolecular interactions.
14.
Amber M. Johnson Calvin A. Wiley Michael C. Young Xing Zhang Yana Lyon Prof. Ryan R. Julian Prof. Richard J. Hooley 《Angewandte Chemie (International ed. in English)》2015,54(19):5641-5645
Highly selective, narcissistic self‐sorting can be achieved in the formation of self‐assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high‐fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process. 相似文献
15.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(1):57-68
A diverse range of dinuclear double‐stranded helicates in which the ligand strand is built up by using hydrogen‐bonding has been synthesized. The helicates, formulated as [Co2(L)2(L‐H)2X2], readily self‐assemble from a mixture of a suitable pyridine–alcohol compound (L; for example, 6‐methylpyridine‐2‐methanol, 1 ), and a CoX2 salt in the presence of base. Nine such helicates have been characterized by X‐ray crystallography. For helicates derived from the same pyridine–alcohol precursor, a remarkable regularity was found for both the molecular structure and the crystal packing arrangements, regardless of the nature of the ancillary ligand (X). A notable exception was observed in the solid‐state structure of [Co2( 1 )2( 1 ‐H)2(NCS)2] for which intermolecular nonbonded contacts between the sulfur atoms (S???S=3.21 Å) lead to the formation of 1D chains. Helicates derived from (R)‐6‐methylpyridine‐2‐methanol ( 2 ) are soluble in solvents such as CH3CN and CH2Cl2, and their self‐assembly could be monitored in solution by 1H NMR, UV/Vis, and CD titrations. No intermediate complexes were observed to form in a significant concentration at any point throughout these titrations. The global thermodynamic stability constant of [Co2( 2 )2( 2 ‐H)2(NO3)2] was calculated from spectrophotometric data to be logβ=8.9(8). The stereoisomerism of these helicates was studied in some detail and the self‐assembly process was found to be highly stereoselective. The chirality of the ligand precursors can control the absolute configuration of the metal centers and thus the overall helicity of the dinuclear assemblies. Furthermore, the enantiomers of rac‐6‐methylpyridine‐2‐methanol ( 3 ) undergo a self‐recognition process to form exclusively homochiral helicates in which the four pyridine–alcohol units possess the same chirality. 相似文献
16.
17.
Tomislav Friščić Dr. Ernest Meštrović Dr. Dijana Škalec Šamec Branko Kaitner Prof. Dr. László Fábián Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(46):12644-12652
Liquid‐assisted grinding (LAG) was used to combine three levels of molecular self‐assembly into a one‐pot mechanochemical approach for the construction of metal–organic materials. The approach was applied for the construction of three adducts of cobalt(II) dibenzoylmethanate with isonicotinamide, nicotinamide and imidazole, to screen for their inclusion compounds. The one‐pot process consists of: i) The coordination‐driven binding of addends to the equatorially‐protected metal ion, resulting in “wheel‐and‐axle”‐shaped complexes; ii) self‐assembly of resulting complexes by way of hydrogen‐bonded synthons to form metal–organic inclusion hosts; iii) in situ inclusion of the grinding liquid in the resulting host. This approach provided quantitatively and within 20 min the known inclusion compounds of the bis(isonicotinamide) adduct in a single synthetic step. Changing the liquid phase in LAG was used to explore the inclusion behaviour of new wheel‐and‐axle adducts with nicotinamide and imidazole, revealing several inclusion compounds, as well as two polymorphs, of the bis(nicotinamide) host. Preliminary results suggest that one‐pot LAG is superior to solution synthesis in screening for metal–organic inclusion compounds. The difference between the methods is rationalised in terms of reactant solubility and solvent competition. In contrast to the nicotinamide adduct, the bis(imidazole) adduct did not form inclusion compounds. The difference in the inclusion properties of the two adducts is rationalised by structural information gathered by single crystal and powder X‐ray diffraction. 相似文献
18.
19.
《Macromolecular rapid communications》2017,38(7)
Developing simple methods to organize nanoscale building blocks into ordered superstructures is a crucial step toward the practical development of nanotechnology. Bottom‐up nanotechnology using self‐assembly bridges the molecular and macroscopic, and can provide unique material properties, different from the isotropic characteristics of common substances. In this study, a new class of supramolecular hydrogels comprising 40 nm thick linear polymer layers sandwiched between nanolayers of self‐assembled amphiphilic molecules are prepared and studied by nuclear magnetic resonance spectroscopy, scanning electronic microscopy, small angle X‐ray diffraction, and rheometry. The amphiphilic molecules spontaneously self‐assemble into bilayer membranes when they are in liquid‐crystal state. The hydrogen bonds at the interface of the nanolayers and linear polymers serve as junctions to stabilize the network. These hydrogels with layered structure are facile to prepare, mechanically stable, and with unique temperature‐dependent optical transparency, which makes it interesting in applications, such as soft biological membranes, drug release, and optical filters.
20.
Hanna Jędrzejewska Michał Wierzbicki Dr. Piotr Cmoch Prof. Kari Rissanen Prof. Agnieszka Szumna 《Angewandte Chemie (International ed. in English)》2014,53(50):13760-13764
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly. 相似文献