首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many degenerative diseases such as Alzheimer's and Parkinson's involve proteins that have a tendency to misfold and aggregate eventually forming amyloid fibers. This review describes the use of monolayers, bilayers, supported membranes, and vesicles as model systems that have helped elucidate the mechanisms and consequences of the interactions between amyloidogenic proteins and membranes. These are twofold: membranes favor the formation of amyloid structures and these induce damage in those membranes. We describe studies that show how interfaces, especially charged ones, favor amyloidogenic protein aggregation by several means. First, surfaces increase the effective protein concentration reducing a three-dimensional system to a two-dimensional one. Second, charged surfaces allow electrostatic interactions with the protein. Anionic lipids as well as rafts, rich in cholesterol and gangliosides, prove to play an especially important role. Finally, these amphipathic systems also offer a hydrophobic environment favoring conformational changes, oligomerization, and eventual formation of mature fibers. In addition, we examine several models for membrane permeabilization: protein pores, leakage induced by extraction of lipids, chaotic pores, and membrane tension, presenting illustrative examples of experimental evidence in support of these models. The picture that emerges from recent work is one where more than one mechanism is in play. Which mechanism prevails depends on the protein, its aggregation state, and the lipid environment in which the interactions occur.  相似文献   

2.
Protein folding is the most fundamental and universal example of biomolecular self-organization and is characterized as an intramolecular process. In contrast, amyloidogenic proteins can interact with one another, leading to protein aggregation. The energy landscape of amyloid fibril formation is characterized by many minima for different competing low-energy structures and, therefore, is much more enigmatic than that of multiple folding pathways. Thus, to understand the entire energy landscape of protein aggregation, it is important to elucidate the full picture of conformational changes and polymorphisms of amyloidogenic proteins. This review provides an overview of the conformational diversity of amyloid-β (Aβ) characterized from experimental and theoretical approaches. Aβ exhibits a high degree of conformational variability upon transiently interacting with various binding molecules in an unstructured conformation in a solution, forming an α-helical intermediate conformation on the membrane and undergoing a structural transition to the β-conformation of amyloid fibrils. This review also outlines the structural polymorphism of Aβ amyloid fibrils depending on environmental factors. A comprehensive understanding of the energy landscape of amyloid formation considering various environmental factors will promote drug discovery and therapeutic strategies by controlling the fibril formation pathway and targeting the consequent morphology of aggregated structures.  相似文献   

3.
Many peptides and proteins with large sequences and structural differences self‐assemble into disease‐causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross‐interaction. Here, we demonstrate how the self‐assembled, cyclic d,l ‐α‐peptide CP‐2 , which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson′s disease associated α‐synuclein (α‐syn) aggregation to toxic oligomers by an ?off‐pathway“ mechanism. We show that CP‐2 interacts with the N‐terminal and the non‐amyloid‐β component region of α‐syn, which are responsible for α‐syn′s membrane intercalation and self‐assembly, thus changing the overall conformation of α‐syn. CP‐2 also remodels α‐syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α‐syn in neuronal cells overexpressing α‐syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.  相似文献   

4.
Amyloidosis is a group of diseases that includes Alzheimer’s disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or preventing the production of causative proteins; (2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.  相似文献   

5.
Amyloid deposition is a hallmark of many diseases, such as the Alzheimer’s disease. Numerous amyloidogenic proteins, including the islet amyloid polypeptide (IAPP) associated with type II diabetes, are natively unfolded and need to undergo conformational rearrangements allowing the formation of locally ordered structure(s) to initiate self‐assembly. Recent studies have indicated that the formation of α‐helical intermediates accelerates fibrillization, suggesting that these species are on‐pathway to amyloid assembly. By identifying an IAPP derivative with a restricted conformational ensemble that co‐assembles with IAPP, we observed that helical species were off‐pathway in homogenous environment and in presence of lipid bilayers or glycosaminoglycans. Moreover, preventing helical folding potentiated membrane perturbation and IAPP cytotoxicity, indicating that stabilization of helical motif(s) is a promising strategy to prevent cell degeneration associated with amyloidogenesis.  相似文献   

6.
In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore‐forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high‐performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore‐forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore‐forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore‐forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high‐performance by utilizing the specific properties of lipid membranes.  相似文献   

7.
Cross-beta amyloid is implicated in over 20 human diseases. Experiments suggest that specific sequence elements within amyloidogenic proteins play a major role in seeding amyloid formation. Identifying these seeding sequences is important for rationalizing the molecular mechanisms of amyloid formation and for elaborating therapeutic strategies that target amyloid. Theoretical techniques play an important role in facilitating the identification and structural characterization of putative seeding sequences; most amyloid species are not amenable to high resolution experimental structure techniques. In this study we have combined a coarse-grained physicochemical protein model with a highly efficient Monte Carlo sampling technique to identify amyloidogenic sequences in four proteins for which respective experimental peptide fragmentation data exist. Peptide sequences were defined as amyloidogenic if the ensemble structure predicted for three interacting peptides described a stable and regular three-stranded beta-sheet. For such peptides, free energies were calculated to provide a measure of amyloid propensity. The overall agreement between the experimental and predicted data is good, and we correctly identify several self-recognition motifs proposed to define the cross-beta amyloid fibril architectures of two of the proteins. Our results compare very favorably with those obtained using atomistic molecular dynamics methods, though our simulations are 30-40 times faster.  相似文献   

8.
Physiological and pathological functions of glycans are promoted through their clustering effects as exemplified by a series of gangliosides, sialylated glycosphingolipids, which serve as acceptors for bacterial toxins and viruses. Furthermore, ganglioside GM1 clusters on neuronal cell membranes specifically interact with amyloidogenic proteins, triggering their conformational transitions and leading to neurodegeneration. Here we develop a self‐assembled spherical complex that displays a cluster of the GM1 pentasaccharide, and successfully demonstrate its ability to interact with amyloid β and α‐synuclein. Due to the lack of hydrophobic lipid moieties, which would stably trap these cohesive proteins or give rise to toxic aggregates, this artificial cluster enabled NMR spectroscopic characterization of the early encounter stage of protein interactions with its outer carbohydrate moieties, which were not observable with previous glycan clusters.  相似文献   

9.
Alzheimer's disease is characterized by the aggregation and deposition of the Aβ peptide. This 40 or 42 residue peptide is the product of the proteolysis of the amyloid precursor protein membrane protein and is able to assemble to form ordered, stable amyloid fibrils as well as small, soluble, and potentially cytotoxic oligomers. The toxicity of the oligomers may be associated with the ability to bind to and affect the integrity of lipid membranes. In this novel work, we have monitored and compared the ability of the potent Aβ42 peptide, the less amyloidogenic Aβ40 peptide, and a variant with reduced amyloidogenicity to bind to and affect the integrity of membranes using dye-filled synthetic vesicles. We reveal that the potency of the assemblies reduces with incubation time of the peptide and that maximal effect occurs when a particular species is apparent by electron microscopy. We have investigated the effect of lipid vesicle composition, and our results suggest that charge on the vesicles is important and that binding may partly be mediated by the GM1 ganglioside receptors expressed in the outer leaflet of vertebrate membranes.  相似文献   

10.
By combining NMR spectroscopy, transmission electron microscopy, and circular dichroism we have identified the structural determinants involved in the interaction of green tea catechins with Aβ1–42, PrP106–126, and ataxin‐3 oligomers. The data allow the elucidation of their mechanism of action, showing that the flavan‐3‐ol unit of catechins is essential for interaction. At the same time, the gallate moiety, when present, seems to increase the affinity for the target proteins. These results provide important information for the rational design of new compounds with anti‐amyloidogenic activity and/or molecular tools for the specific targeting of amyloid aggregates in vivo.  相似文献   

11.
Aggregation of Islet Amyloid Polypeptide (IAPP) has been implicated in the development of type II diabetes. Because IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers causes disruption of the cellular membrane and is responsible for the death of beta-cells during type II diabetes. Previous studies have shown that the N-terminal 1-19 region, rather than the amyloidogenic 20-29 region, is primarily responsible for the interaction of the IAPP peptide with membranes. Liposome leakage experiments presented in this study confirm that the pathological membrane disrupting activity of the full-length hIAPP is also shared by hIAPP 1-19. The hIAPP 1-19 fragment at a low concentration of peptide induces membrane disruption to a near identical extent as the full-length peptide. At higher peptide concentrations, the hIAPP 1-19 fragment induces a greater extent of membrane disruption than the full-length peptide. Similar to the full-length peptide, hIAPP 1-19 exhibits a random coil conformation in solution and adopts an alpha-helical conformation upon binding to lipid membranes. However, unlike the full-length peptide, the hIAPP 1-19 fragment did not form amyloid fibers when incubated with POPG vesicles. These results indicate that membrane disruption can occur independently from amyloid formation in IAPP, and the sequences responsible for amyloid formation and membrane disruption are located in different regions of the peptide.  相似文献   

12.
The design of inhibitors of protein–protein interactions mediating amyloid self‐assembly is a major challenge mainly due to the dynamic nature of the involved structures and interfaces. Interactions of amyloidogenic polypeptides with other proteins are important modulators of self‐assembly. Here we present a hot‐segment‐linking approach to design a series of mimics of the IAPP cross‐amyloid interaction surface with Aβ (ISMs) as nanomolar inhibitors of amyloidogenesis and cytotoxicity of Aβ, IAPP, or both polypeptides. The nature of the linker determines ISM structure and inhibitory function including both potency and target selectivity. Importantly, ISMs effectively suppress both self‐ and cross‐seeded IAPP self‐assembly. Our results provide a novel class of highly potent peptide leads for targeting protein aggregation in Alzheimer’s disease, type 2 diabetes, or both diseases and a chemical approach to inhibit amyloid self‐assembly and pathogenic interactions of other proteins as well.  相似文献   

13.
Peptide self-assembly on substrates is currently an intensively studied topic that provides a promising strategy for fabrication of soft materials and is also important for revealing the surface chemistry of amyloidogenic proteins that aggregate on cell membranes. We investigated the fibrogenesis of a beta-sheet forming peptide Abeta(26-35) on supported lipid bilayers (SLBs) by in situ atomic force microscopy (AFM), circular dichroism (CD), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results show that the Abeta(26-35) nanofilaments' growth is oriented to a specific direction and formed a highly ordered, large-scale, parallel-oriented surface pattern on membranes. The parallel-oriented fibrogenesis of Abeta(26-35) was able to occur on different lipid membranes rather than on solid substrates. It implies that the parallel-oriented fibrogenesis was associated with the distinct properties of lipid membranes, such as the fluid nature of lipid molecules on membranes. The membrane fluidity may allow the peptide assemblies to float at the water-membrane interface and easily orient to an energetically favorable state. These results provide an insight into the surface chemistry of peptide self-assembly on lipid membranes and highlight a possible way to fabricate supramolecular architectures on the surface of soft materials.  相似文献   

14.
BACKGROUND: Pancreatic amyloid has been associated with type II diabetes. The major constituent of pancreatic amyloid is the 37-residue peptide islet amyloid polypeptide (IAPP). IAPP is expressed as a 67-residue pro-peptide called ProIAPP which is processed to IAPP following stimulation. While the molecular events underlying IAPP amyloid formation in vitro have been studied, little is known about the role of ProIAPP in the formation of pancreatic amyloid. This has been due in part to the limited availability of purified ProIAPP for conformational and biochemical studies. RESULTS: We present a method for efficient recombinant expression and purification of ProIAPP and a processing site mutant, mutProIAPP, as thioredoxin (Trx) fusion proteins. Conformation and amyloidogenicity of cleaved ProIAPP and mutProIAPP and the fusion proteins were assessed by circular dichroism, electron microscopy and Congo red staining. We find that ProIAPP and mutProIAPP exhibit strong self-association potentials and are capable of forming amyloid. However, the conformational transitions of ProIAPP and mutProIAPP during aging and amyloidogenesis are distinct from the random coil-to-beta-sheet transition of IAPP. Both proteins are found to be less amyloidogenic than IAPP and besides fibrils a number of non-fibrillar but ordered aggregates form during aging of ProIAPP. ProIAPP aggregates are cytotoxic on pancreatic cells but less cytotoxic than IAPP while mutProIAPP aggregates essentially lack cytotoxicity. The Trx fusion proteins are neither amyloidogenic nor cytotoxic. CONCLUSIONS: Our studies suggest that ProIAPP has typical properties of an amyloidogenic polypeptide but also indicate that the pro-region suppresses the amyloidogenic and cytotoxic potentials of IAPP.  相似文献   

15.
Electrophoretic mobilities of amyloid‐beta (1‐40) and (1‐42) peptides and their aggregates are modeled to study the amyloidogenic pathway associated with Alzheimer´s Disease. The near molecule pH generated by the intraparticle charge regulation phenomenon during the oligomerization of amyloid‐beta (1‐40) and (1‐42) peptides is evaluated and discussed as a relevant mechanism supporting the “amyloid cascade hypothesis” proposed in the literature. A theoretical framework associated with the oligomerization of amyloid‐beta peptides including simple scaling laws and the consideration of electrokinetic and hydrodynamic global properties of oligomers is presented. The central finding is the explanation of the near molecule pH change toward the pI when the oligomerization number increases. These results allow one to rationalize consecutive physical stages that validate the amyloid cascade hypothesis. Concluding remarks involving mainly the effects of pair and intraparticle charge regulation phenomena on the amyloidogenic pathway with some suggestions for future research are provided.  相似文献   

16.
Neuronal activity loss may be due to toxicity caused by amyloid‐beta peptides forming soluble oligomers. Here amyloid‐beta peptides (1–42, 1–40, 1–39, 1–38, and 1–37) are characterized through the modeling of their experimental effective electrophoretic mobilities determined by a capillary zone electrophoresis method as reported in the literature. The resulting electrokinetic and hydrodynamic global properties are used to evaluate amyloid‐beta peptide propensities to aggregation through pair particles interaction potentials and Brownian aggregation kinetic theories. Two background electrolytes are considered at 25°C, one for pH 9 and ionic strength I = 40 mM (aggregation is inhibited through NH4OH) the other for pH 10 and I = 100 mM (without NH4OH). Physical explanations of peptide oligomerization mechanisms are provided. The effect of hydration, electrostatic, and dispersion forces in the amyloidogenic process of amyloid‐beta peptides (1–40 and 1–42) are quantitatively presented. The interplay among effective charge number, hydration, and conformation of chains is described. It is shown that amyloid‐beta peptides (1–40 and 1–42) at pH 10, I = 100 mM and 25°C, may form soluble oligomers, mainly of order 2 and 4, after an incubation of 48 h, which at higher times evolve and end up in complex structures (protofibrils and fibrils) found in plaques associated with Alzheimer's disease.  相似文献   

17.
Extracellular deposition of amyloid‐beta (Aβ) protein, a fragment of membrane glycoprotein called β‐amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we have performed multiple all‐atom molecular dynamics simulations for physiological 42‐residue amyloid‐beta protein (Aβ42) in explicit water to characterize most plausible aggregation‐prone structure (APS) for the monomer and the very early conformational transitions for Aβ42 protein misfolding process in a lag phase. Monitoring the early sequential conformational transitions of Aβ42 misfolding in water, the APS for Aβ42 monomer is characterized by the observed correlation between the nonlocal backbone H‐bond formation and the hydrophobic side‐chain exposure. Characteristics on the nature of the APS of Aβ42 allow us to provide new insight into the higher aggregation propensity of Aβ42 over Aβ40, which is in agreement with the experiments. On the basis of the structural features of APS, we propose a plausible aggregation mechanism from APS of Aβ42 to form fibril. The structural and mechanistic observations based on these simulations agree with the recent NMR experiments and provide the driving force and structural origin for the Aβ42 aggregation process to cause AD. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
Polymer lipid nanodiscs are an invaluable system for structural and functional studies of membrane proteins in their near‐native environment. Despite the recent advances in the development and usage of polymer lipid nanodisc systems, lack of control over size and poor tolerance to pH and divalent metal ions are major limitations for further applications. A facile modification of a low‐molecular‐weight styrene maleic acid copolymer is demonstrated to form monodispersed lipid bilayer nanodiscs that show ultra‐stability towards divalent metal ion concentration over a pH range of 2.5 to 10. The macro‐nanodiscs (>20 nm diameter) show magnetic alignment properties that can be exploited for high‐resolution structural studies of membrane proteins and amyloid proteins using solid‐state NMR techniques. The new polymer, SMA‐QA, nanodisc is a robust membrane mimetic tool that offers significant advantages over currently reported nanodisc systems.  相似文献   

19.
《印度化学会志》2023,100(2):100892
Transthyretin (TTR) is a cerebrospinal fluid and plasma prevalent protein implicated in heritable and sporadic amyloidosis. Numerous mutations and a wide range of phenotypes have been associated with TTR-mediated amyloidosis. Among these, V30 M is the most predominant point mutation, inculpated with familial amyloid polyneuropathy (FAP), a life-threatening autosomal dominant genetic disorder characterized by the deposition of amyloid fibrils in crucial areas. Hence, efficacious therapeutics against this detrimental disorder is warranted. Lately, several peptide-based analeptics, especially the ones that are aggregation-prone and the ones derived from aggregation hotspots of amyloidogenic proteins are being increasingly proffered against the amyloid fibrils. In the present study, as an effective precursor to in vitro investigations, we examined and assessed the therapeutic potentials of aggregation-prone peptides (APPs) derived from TTR, against V30 M TTR amyloid fibrils, computationally. Out of five experimentally corroborated APPs availed for this study, molecular dynamics simulation analysis endorses APP TAVVTN to be an effective beta-sheet breaker against V30 M TTR amyloid fibrils. Furthermore, consistent findings from various molecular trajectory analyses, residual frustration analysis and simulated thermal denaturation have indicated that APP TAVVTN could effectually relater the structural dynamics of V30 M TTR amyloid fibrils, to conformationally digress it away from its amyloidogenic propensities. Hence, based on consistent unvarying findings from numerous adept computational pipelines, APP TAVVTN could be an efficacious analeptic to therapeutically intervene and mitigate the amyloidogenic propensities of V30 M TTR amyloid fibrils, thereby ameliorating the pathological ramifications due to FAP.  相似文献   

20.
We report the fabrication of a microfluidic apparatus and the realization of a sensors based on PEDOT : PSS, a biocompatible semiconductor polymer used in substitution of standard electrodes for electrophysiological studies and for detection of nanopores in membrane. This gives the possibility to study the mechanisms of ions balance and molecular transport though cell membranes. In particular the apparatus is based on two chambers connected through an aperture in a PTFE sheet where lipid bilayer are formed using Montal‐Mueller method, and the pore‐forming proteins activity is detected by polymeric electrodes. This methodology could be applied to examine different membrane proteins for the purpose of biosensing, drug screening and nanopore technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号