首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐healing materials are capable of spontaneously repairing themselves at damaging sites without additional adhesives. They are important functional materials with wide applications in actuators, shape memorizing materials, smart coatings, and medical treatments, etc. Herein, this study reports the self‐healing of graphene oxide (GO) functional architectures and devices with the assistance of moisture. These GO architectures can completely restore their mechanical‐performance (e.g., compressibility, flexibility, and strength) after healing their broken sites using a little amount of water moisture. On the basis of this effective moisture‐triggered self‐healing process, this study develops GO smart actuators (e.g., bendable actuator, biomimetic walker, rotatable fiber motor) and sensors with self‐healing ability. This work provides a new pathway for the development of self‐healing materials for their applications in multidimensional spaces and functional devices.  相似文献   

2.
The industrial scale application of graphene and other functional materials in the field of electronics has been limited by inherent defects, and the lack of simple deposition methods. A simple spray deposition method is developed that uses a supersonic air jet for a commercially available reduced graphene oxide (r‐GO) suspension. The r‐GO flakes are used as received, which are pre‐annealed and pre‐hydrazine‐treated, and do not undergo any post‐treatment. A part of the considerable kinetic energy of the r‐GO flakes entrained by the supersonic jet is used in stretching the flakes upon impact with the substrate. The resulting “frozen elastic strains” heal the defects (topological defects, namely Stone‐Wales defect and C2 vacancies) in the r‐GO flakes, which is reflected in the reduced ratio of the intensities of the D and G bands in the deposited film. The defects can also be regenerated by annealing.  相似文献   

3.
TiO2 nanorods are self‐assembled on the graphene oxide (GO) sheets at the water/toluene interface. The self‐assembled GO–TiO2 nanorod composites (GO–TiO2 NRCs) can be dispersed in water. The effective anchoring of TiO2 nanorods on the whole GO sheets is confirmed by transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), and thermogravimetric analysis (TGA). The significant increase of photocatalytic activity is confirmed by the degradation of methylene blue (MB) under UV light irridiation. The large enhancement of photocatalytic activity is caused by the effective charge anti‐recombination and the effective absorption of MB on GO. The effective charge transfer from TiO2 to GO sheets is confirmed by the significant photoluminescence quenching of TiO2 nanorods, which can effectively prevent the charge recombination during photocatalytic process. The effective absorption of MB on GO is confirmed by the UV‐vis spectra. The degradation rate of MB in the second cycle is faster than that in the first cycle because of the reduction of GO under UV light irradiation.  相似文献   

4.
The precisely controllable growth of self‐aligned single‐crystal graphene grains on liquid Cu surface by ambient pressure chemical vapor deposition is reported. Large scale monolayer graphene arrays are modulated by varying growth conditions such as flow rate of carbon source, growth temperature, and growth time. Further, bilayer graphene grains are also controllably prepared under optimized growth conditions. The self‐alignment mechanism of graphene is also studied and a growth model is proposed to explain that process involving surface tension of liquid phase. In all, the growth mechanism of graphene arrays is firstly probed and the grown graphene arrays show reasonable mobility and high current density, posing great potential for graphene‐based electronics.  相似文献   

5.
Compartmentalization is an essential feature found in living cells to ensure multiple biological processes occur without being affected by undesired external influences. Here, compartmentalized systems are developed based on the self‐assembly of metal–organic framework (MOF) nanoparticles into multifunctional MOF capsules (MOF‐Cs). Such MOF‐Cs have the capability of controlling molecular transportation and protecting interior microenvironment, thus making tandem reaction along trajectories to desired products. First of all, MOF‐Cs present controlled molecular transportation derived from molecular sieving property of MOFs. Second, MOF‐Cs can protect the encapsulated cargoes from denaturation and maintain their catalytic activity. Third, MOF‐Cs can provide spatial segregation for incompatible species and facilitate communication between these compartments to perform tandem reactions. These compartmentalized structures offer new views in the transportation, microreactor, and biotechnology.  相似文献   

6.
Highly ordered, homogeneous polymer nanocomposites of layered graphene oxide are prepared using a vacuum‐assisted self‐assembly (VASA) technique. In VASA, all components (nanofiller and polymer) are pre‐mixed prior to assembly under a flow, making it compatible with either hydrophilic poly(vinyl alcohol) (PVA) or hydrophobic poly(methyl methacrylate) (PMMA) for the preparation of composites with over 50 wt% filler. This process is complimentary to layer‐by‐layer assembly, where the assembling components are required to interact strongly (e.g., via Coulombic attraction). The nanosheets within the VASA‐assembled composites exhibit a high degree of order with tunable intersheet spacing, depending on the polymer content. Graphene oxide–PVA nanocomposites, prepared from water, exhibit greatly improved modulus values in comparison to films of either pure PVA or pure graphene oxide. Modulus values for graphene oxide–PMMA nanocomposites, prepared from dimethylformamide, are intermediate to those of the pure components. The differences in structure, modulus, and strength can be attributed to the gallery composition, specifically the hydrogen bonding ability of the intercalating species  相似文献   

7.
The factors limiting the conductivity of fluorine‐doped tin dioxide (FTO) produced via atmospheric pressure chemical vapor deposition are investigated. Modeling of the transport properties indicates that the measured Hall effect mobilities are far below the theoretical ionized impurity scattering limit. Significant compensation of donors by acceptors is present with a compensation ratio of 0.5, indicating that for every two donors there is approximately one acceptor. Hybrid density functional theory calculations of defect and impurity formation energies indicate the most probable acceptor‐type defects. The fluorine interstitial defect has the lowest formation energy in the degenerate regime of FTO. Fluorine interstitials act as singly charged acceptors at the high Fermi levels corresponding to degenerately n‐type films. X‐ray photoemission spectroscopy of the fluorine impurities is consistent with the presence of substitutional FO donors and interstitial Fi in a roughly 2:1 ratio in agreement with the compensation ratio indicated by the transport modeling. Quantitative analysis through Hall effect, X‐ray photoemission spectroscopy, and calibrated secondary ion mass spectrometry further supports the presence of compensating fluorine‐related defects.  相似文献   

8.
Assembling complex nanostructures on functional substrates such as electrodes promises new multi‐functional interfaces with synergetic properties capable of integration into larger‐scale devices. Here, we report a microemulsion‐mediated process for the preparation of CuO/Cu electrodes comprising a surface layer of a densely packed array of unusual cog‐shaped CuO microparticles with hierarchical nanofilament‐based superstructure and enhanced electrochemical performance in lithium‐ion batteries. The CuO particles are produced by thermolysis of Cu(OH)2 micro‐cog precursors that spontaneously assemble on the copper substrate when the metal foil is treated with a reactive oil‐based microemulsion containing nanometer‐scale aqueous droplets. The formation of the hierarchical superstructure improves the coulombic efficiency, specific capacity, and cycling performance compared with anodes based on CuO nanorods or polymer‐blended commercial CuO/C black powders, and the values for the initial discharge capacity (1052 mA h g?1) and reversible capacity (810 m A h g?1) are higher than most copper oxide materials used in lithium‐ion batteries. The results indicate that a fabrication strategy based on self‐assembly within confined reaction media, rather than direct synthesis in bulk solution, offers a new approach to the design of electrode surface structures for potential development in a wide range of materials applications.  相似文献   

9.
The self‐assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray diffraction demonstrate that the HRP–GSs bionanocomposites feature ordered hierarchical nanostructures with well‐dispersed HRP intercalated between the GSs. UV‐vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS‐functionalized GSs. Furthermore, the HRP–GSs composites are utilized for the fabrication of enzyme electrodes (HRP–GSs electrodes). Electrochemical measurements reveal that the resulting HRP–GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP–GSs bionanocomposites toward H2O2. As graphene can be readily non‐covalently functionalized by “designer” aromatic molecules with different electrostatic properties, the proposed self‐assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications.  相似文献   

10.
11.
A simple, versatile method for non‐covalent functionalization of graphene based on solution‐phase assembly of alkane‐amine layers is presented. Second‐order Møller–Plesset (MP2) perturbation theory on a cluster model (methylamine on pyrene) yields a binding energy of ≈220 meV for the amine–graphene interaction, which is strong enough to enable formation of a stable aminodecane layer at room temperature. Atomistic molecular dynamics simulations on an assembly of 1‐aminodecane molecules indicate that a self‐assembled monolayer can form, with the alkane chains oriented perpendicular to the graphene basal plane. The calculated monolayer height (≈1.7 nm) is in good agreement with atomic force microscopy data acquired for graphene functionalized with 1‐aminodecane, which yield a continuous layer with mean thickness ≈1.7 nm, albeit with some island defects. Raman data also confirm that self‐assembly of alkane‐amines is a non‐covalent process, i.e., it does not perturb the sp2 hybridization of the graphene. Passivation and adsorbate n‐doping of graphene field‐effect devices using 1‐aminodecane, as well as high‐density binding of plasmonic metal nanoparticles and seeded atomic layer deposition of inorganic dielectrics using 1,10‐diaminodecane are also reported.  相似文献   

12.
Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g?1 and high packing density of 0.917 g cm?3 performs high gravimetric, volumetric, and areal capacitances of 235 F g?1, 215 F cm?3, and 3.95 F cm?2 (mass loading of 22 mg cm?2) at 1 A g?1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m?2 including a “self‐doping” defect contribution of 4.81 F m?2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m?2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.  相似文献   

13.
Gaining spatially resolved control over the mechanical properties of materials in a remote, programmable, and fast‐responding way is a great challenge toward the design of adaptive structural and functional materials. Reversible, temperature‐sensitive systems, such as polymers equipped with supramolecular units, are a good model system to gain detailed information and target large‐scale property changes by exploiting reversible crosslinking scenarios. Here, it is demonstrated that coassembled elastomers based on polyglycidols functionalized with complementary cyanuric acid and diaminotriazine hydrogen bonding couples can be remotely modulated in their mechanical properties by spatially confined laser irradiation after hybridization with small amounts of thermally reduced graphene oxide (TRGO). The TRGO provides an excellent photothermal effect, leads to light‐adaptive steady‐state temperatures, and allows local breakage/de‐crosslinking of the hydrogen bonds. This enables fast self‐healing and spatiotemporal modulation of mechanical properties, as demonstrated by digital image correlation. This study opens pathways toward light‐fueled and light‐adaptive graphene‐based nanocomposites employing molecularly controlled thermal switches.  相似文献   

14.
Remarkable enhancement of piezoelectric power output from a nanogenerator (NG) based on a zinc oxide (ZnO) thin film is achieved via native defect control. A large number of unintentionally induced point defects that act as n‐type carriers in ZnO have a strong influence on screening the piezoelectric potential into a piezoelectric NG. Here, additional oxygen molecules bombarded into ZnO lead to oxygen‐rich conditions, and the n‐type conductivity of ZnO is decreased dramatically. The acceptor‐type point defects such as zinc vacancies created during the deposition process trap n‐type carriers occurring from donor‐type point defects through a self‐compensation mechanism. This unique insulating‐type ZnO thin film‐based NGs (IZ‐NGs) generates output voltage around 1.5 V that is over ten times higher than that of an n‐type ZnO thin film‐based NG (around 0.1 V). In addition, it is found that the power output performance of the IZ‐NG can be further increased by hybridizing with a p‐type polymer (poly(3‐hexylthiophene‐2,5‐diyl):phenyl‐C61‐butyric acid methyl ester) via surface free carrier neutralization.  相似文献   

15.
Despite advances in the development of silk fibroin (SF)‐based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal‐ligand coordination chemistry is developed to assemble SF‐based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF‐based hydrogel exhibits shear‐thinning and autonomous self‐healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate‐coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF‐based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self‐healing and photopolymerizable SF‐based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit‐to‐shape molding.  相似文献   

16.
Mimicking the intelligence of biological organisms in artificial systems to design smart actuators that act autonomously in response to constant environmental stimuli is crucial to the construction of intelligent biomimetic robots and devices, but remains a great challenge. Here, a light‐driven autonomous carbon‐nanotube‐based bimorph actuator is developed through an elaborate structural design. This curled droplet‐shaped actuator can be simply driven by constant white light irradiation, self‐propelled by a light‐mechanical negative feedback loop created by light‐driven actuation, time delay in the photothermal response along the actuator, and good elasticity from the curled structure, performing a continuously self‐oscillating motion in a wavelike fashion, which mimics the human sit‐up motion. Moreover, this autonomous self‐oscillating motion can be further tuned by controlling the intensity and direction of the incident light. The autonomous actuator with continuous wavelike oscillating motion shows immense potential in light‐driven biomimetic soft robots and optical‐energy‐harvesting devices. Furthermore, a self‐locomotive artificial snake with phototaxis is constructed, which autonomously and continuously crawls toward the light source in a wave‐propagating manner under constant light irradiation. This snake can be placed on a substrate made of triboelectric materials to realize continuous electric output when exposed to constant light illumination.  相似文献   

17.
A simple method to prepare large‐scale graphene sponges and free‐standing graphene films using a speed vacuum concentrator is presented. During the centrifugal evaporation process, the graphene oxide (GO) sheets in the aqueous suspension are assembled to generate network‐linked GO sponges or a series of multilayer GO films, depending on the temperature of a centrifugal vacuum chamber. While sponge‐like bulk GO materials (GO sponges) are produced at 40 °C, uniform free‐standing GO films of size up to 9 cm2 are generated at 80 °C. The thickness of GO films can be controlled from 200 nm to 1 µm based on the concentration of the GO colloidal suspension and evaporation temperature. The synthesized GO films exhibit excellent transparency, typical fluorescent emission signal, and high flexibility with a smooth surface and condensed density. Reduced GO sponges and films with less than 5 wt% oxygen are produced through a thermal annealing process at 800 °C with H2/Ar flow. The structural flexibility of the reduced GO sponges, which have a highly porous, interconnected, 3D network, as well as excellent electrochemical properties of the reduced GO film with respect to electrode kinetics for the [Fe(CN)6]3?/4? redox system, are demonstrated.  相似文献   

18.
The conductivity of graphite oxide films is modulated using reducing agents. It is found that the sheet resistance of graphite oxide film reduced using sodium borohydride (NaBH4) is much lower than that of films reduced using hydrazine (N2H4). This is attributed to the formation of C? N groups in the N2H4 case, which may act as donors compensating the hole carriers in reduced graphite oxide. In the case of NaBH4 reduction, the interlayer distance is first slightly expanded by the formation of intermediate boron oxide complexes and then contracted by the gradual removal of carbonyl and hydroxyl groups along with the boron oxide complexes. The fabricated conducting film comprising a NaBH4‐reduced graphite oxide reveals a sheet resistance comparable to that of dispersed graphene.  相似文献   

19.
Introducing solar energy into membrane filtration to decrease energy and chemicals consumption represents a promising direction in membrane fields. In this study, a kind of 0D/2D heterojunction is fabricated by depositing biomineralized titanium dioxide (TiO2) nanoparticles with delaminated graphitic carbon nitride (g‐C3N4) nanosheets, and subsequently a kind of 2D heterostructure membrane is fabricated via intercalating g‐C3N4@TiO2 heterojunctions into adjacent graphene oxide (GO) nanosheets by a vacuum‐assisted self‐assembly process. Due to the enlarged interlayer spacing of GO nanosheets, the initial permeation flux of GO/g‐C3N4@TiO2 membrane reaches to 4536 Lm?2 h?1 bar?1, which is more than 40‐fold of GO membranes (101 Lm?2 h?1 bar?1) when utilized for oil/water separation. To solve the sharp permeation flux decline, arising from the adsorption of oil droplets, the a sunlight‐driven self‐cleaning process is followed, maintaining a flux recovery ratio of more than 95% after ten cycles of filtration experiment. The high permeation flux and excellent sunlight‐driven flux recovery of these heterostructure membranes manifest their attractive potential application in water purification.  相似文献   

20.
Biological tissues such as muscle cells can adapt their structural and mechanical response upon external mechanical stimuli. Conversely, artificial muscles, intended to reproduce the salient functional features of biological muscles, usually undergo mechanical fatigue when subjected to dynamic stress. Besides passively improving the resilience to dynamic loads, here, it is reported that macroscopic films based on graphene and its chemical derivate exhibit an increase in modulus by up to 84% after subjected to a low‐amplitude (0.1%) dynamic tension. Through a combination of experimental testing and molecular dynamics simulations, the unique self‐stiffening behavior is attributed to the straightening and reorientation of graphene sheets and is further tuned through tailoring interlayer adhesion. Meanwhile, artificial muscles based on graphene films are designed and interestingly improved stiffness of our muscle materials after “training” are demonstrated. These results help to harness the stiffening mechanism and can be useful for the development of adaptable structural materials for biomechanical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号