首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

3.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, selective and reliable LC‐MS/MS method was validated for simultaneous quantitation of darolutamide diastereomers in 50 μL mouse plasma using warfarin as an internal standard (IS) as per regulatory guidelines. Plasma samples were extracted by liquid–liquid extraction and the chromatographic separation was achieved on a Chiralpak IA column with an isocratic mobile phase 5 mm ammonium acetate–absolute alcohol (20:80, v/v) at a flow rate of 1.0 mL/min. Detection and quantitation was done in multiple reaction monitoring mode following the transitions m/z 397 → 202 and 307 → 250 for darolutamide diastereomers and the IS, respectively, in the negative ionization mode. The linearity range was 100–2400 ng/mL for each diastereomer. The intra‐ and inter‐day precisions were in the ranges of 1.78–4.20 and 4.34–14.6, and 3.63–4.74 and 4.78–5.15 for diastereomer‐1 and diastereomer‐2, respectively. Both diastereomers were found to be stable under different stability conditions. The validated method was applied to a pharmacokinetic study in mice. Following oral administration of darolutamide at 10 mg/kg, maximum concentration in plasma was 4189 and 726 ng/mL for diastereomer‐1 and diastereomer‐2, respectively. The terminal half‐life was found to be ~0.50 h for both the diastereomers. The AUC(0–t) was found to be 18,961 ng*h/mL for diastereomer‐1 and 1340 ng*h/mL diastereomer‐2.  相似文献   

6.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC‐MS/MS) was developed for the determination of pseudo‐ginsenoside GQ in human plasma. Liquid–liquid extraction was used to isolate the analyte from biological matrix followed by injection of the extracts onto a C8 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer (API‐4000 system) in multiple reaction monitoring mode using negative electrospray ionization. The mobile phase consisted of methanol–10 mm ammonium acetate (90:10, v/v) and the flow rate was 0.3 mL/min. The method was validated over the concentration range of 5.0–5000.0 ng/mL for plasma. Inter‐ and intra‐day precisions (relative standard deviation) were all within 15% and the accuracy (relative error) was ≤9.4%. The lower limit of quantitation was 5.0 ng/mL. The pseudo‐ginsenoside GQ was stable after 8 h at room temperature, 24 h at autosampler and three freeze–thaw cycles (from ?30 to 25 °C). The method was successfully applied to the pharmacokinetic study of pseudo‐ginsenoside GQ in healthy Chinese volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method for the determination of periplocymarin in biological samples was developed and successfully applied to the pharmacokinetic and tissue distribution study of periplocymarin after oral administration of periplocin. Biological samples were processed with ethyl acetate by liquid–liquid extraction, and diazepam was used as the internal standard. Periplocymarin was analyzed on a C18 column with isocratic eluted mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min (73:27, v/v). Detection was performed on a triple‐quadrupole tandem mass spectrometer using positive‐ion mode electrospray ionization in the selected reaction monitoring mode. The MS/MS ion transitions monitored were m/z 535.3→355.1 and 285.1→193.0 for periplocymarin and diazepam, respectively. Good linearity was observed over the concentration ranges. The lower limit of quantification was 0.5 ng/mL in plasma and tested tissues. The intra‐and inter‐day precisions (relative standard deviation) were <10.2 and 10.5%, respectively, and accuracies (relative error) were between ?6.8 and 8.9%. Recoveries in plasma and tissue were >90%. The validated method was successfully applied to the pharmacokinetic and tissue distribution studies of periplocymarin in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, a sensitive, simple and reliable method for the quantification of docetaxel in rat plasma was developed and validated using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The plasma samples were prepared by protein precipitation, and paclitaxel was used as an internal standard (IS). Chromatographic separation was achieved using a Gemini C18 column (2.0 × 150 mm, 5 µm) with a mobile phase consisting of 0.1% formic acid–acetonitrile (30:70, v/v). The precursor–product ion pairs used for multiple reaction monitoring were m/z 808.5 → 527.5 (docetaxel) and m/z 854.2 → 286.5 (IS, paclitaxel). A calibration curve for docetaxel was constructed over the range 1–1000 ng/mL. The developed method was specific, precise and accurate, and no matrix effect was observed. The validated method was applied in a comparative pharmacokinetic study in which two docetaxel formulations, SID530, a new parenteral formulation of docetaxel with hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD), and Taxotere, were administered to rats at a dose of 5 mg/kg. For SID530 and Taxotere, the mean C0 values were 1494 and 1818 ng/mL, respectively, and the AUClast values were 837 and 755 h ng/mL, respectively. These two formulations did not show any statistical differences with regard to the pharmacokinetic parameters, thus establishing that the SID530 and Taxotere products are pharmacokinetically comparable in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In this study, a sensitive, selective and reproducible liquid chromatography–tandem mass spectrometry method for the simultaneous determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and its active metabolites, 1‐caffeoyl‐5‐feruoylquinic acid and 1,5‐O‐diferuoylquinic acid, in human plasma, using puerarin as internal standard, was developed and validated. Analytes were extracted from plasma samples by liquid–liquid extraction with ethyl acetate, separated on a C18 reversed‐phase column with water containing 5 mM ammonium acetate and acetonitrile as the mobile phase and detected by electrospray ionization mass spectrometry in negative selected reaction monitoring mode. The accuracy and precision of the method were acceptable and linearity was good over the range 1–200 ng/mL for each analyte. In addition, the selectivity, extraction recovery and matrix effect were satisfactory too. The validated LC‐MS/MS method was successfully applied to phase II clinical pharmacokinetic study of 1,5‐DCQA in patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, simple, sensitive and selective ultraperformance liquid chromatography–tandem spectrometry (UPLC‐MS/MS) method for the determination of nalbuphine and its prodrug sebacoly dinalbuphine ester (SDE) was developed and validated in human plasma. The sample pretreatment involves basification and iterative liquid–liquid extraction with ethyl‐ether–dichloromethane (7:3, v/v) solution, followed by LC separation and positive electrospray ionization (ESI) API‐3000 mass spectrometry detection. The chromatography was on a Waters Acquity UPLC BEH HILIC column (2.1 × 100 mm, 1.7 µm). The mobile phase was composed of acetonitrile and water (83:17, v/v) that contained 0.2% formic acid and 4 mm ammonium formate at a flow rate of 0.25 mL/min. Ethylmorphine and naloxine were selected as the SDE and nalbuphine internal standard (IS), respectively. The calibration curve for both was linear over the range from 0.05 to 20 ng/mL, with correlation coefficients ≥0.995. The lower limit of quantification was set at 0.05 ng/mL. The intra‐ and inter‐day precision values for nalbuphine and SDE were acceptable as per FDA guidelines. The method was applied successfully to determine nalbuphine concentration in human plasma samples obtained from four Taiwanese volunteers receiving intramuscularly administration of sebacoyl dinalbuphine ester. The method is sensitive, selective and directly applicable to human pharmacokinetic studies involving nalbuphine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

15.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

16.
A very accurate and selective LC‐MS/MS method was developed and validated for the quantification of 2′‐C‐modified nucleoside triphosphate in liver tissue samples. An efficient pretreatment procedure of liver tissue samples was developed, using a fully automated SPE procedure with 96‐well SPE plate (weak anion exchange sorbent, 30 mg). Nucleotide hydrophilic interaction chromatography has been performed on an aminopropyl column (100 mm×2.0 mm, 3 μm) using a gradient mixture of ACN and ACN/water (5:95 v/v) with 20 mM ammonium acetate at pH 9.45 as mobile phase at 300 μL/min flow rate. The 2′‐C‐modified nucleoside triphosphate was detected in the negative ESI mode in multiple reaction monitoring (MRM) mode. Calibration curve was linear over the 0.05–50 μM concentration range. Satisfying results, confirming the high reliability of the established LC‐MS/MS method, were obtained for intraday precision (CV = 2.5–9.1%) and accuracy (92.6–94.8%) and interday precision (CV = 9.6–11.5%) and accuracy (94.4–102.4%) as well as for recovery (82.0–112.6%) and selectivity. The method has been successfully applied for pharmacokinetic studies of 2′‐C‐methyl‐cytidine‐triphosphate in liver tissue samples.  相似文献   

17.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay method has been developed and validated for the enantioselective determination of manidipine in human plasma using isotope‐labeled compounds as internal standards. After solid‐phase extraction, R ‐(−)‐manidipine and S ‐(+)‐manidipine were chromatographed on a Chiralpack IC‐3 C18 column using a isocratic mobile phase composed of 2 mm ammonium bicarbonate and acetonitrile (15:85, v /v). The precursor ion to product ion transitions for the enantiomers and internal standards were monitored in the multiple reaction monitoring and positive ionization mode using an API‐4000 mass spectrometer. The method was linear over the concentration range of 0.05–10.2 ng/mL for both enantiomers. The precision and accuracy results over five concentration levels in five different batches were well within the acceptance limits. The mean extraction recovery was >80% for both enantiomers. A variety of stability tests were executed in plasma and in neat samples, which complies with the FDA guidelines. After complete validation, the method was successfully applied to a pharmacokinetic study of a manidipine 20 mg oral dose in 10 healthy South India subjects under fasting conditions. The assay reproducibility is shown through incurred samples reanalysis of 20 subject plasma samples.  相似文献   

19.
In this study, we developed a method for the determination of PF‐04620110 (2‐{(1r,4r)‐4‐[4‐(4‐amino‐5‐oxo‐7,8‐dihydropyrimido[5,4‐f][1,4]oxazepin‐6(5H)‐yl)phenyl]cyclohexyl}acetic acid), a novel diacylglycerol acyltransferase 1 (DGAT‐1) inhibitor, in rat plasma and validated it using liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Rat plasma samples were processed following a protein precipitation method by using acetonitrile and were then injected into an LC‐MS/MS system for quantification. PF‐04620110 and imipramine (internal standard) were separated using a Hypersil Gold C18 column, with a mixture of acetonitrile and 10 mm ammonium formate (90:10, v/v) as the mobile phase. The ion transitions monitored in positive‐ion mode [M + H]+ of multiple‐reaction monitoring were m/z 397.0 → 260.2 for PF‐04620110 and m/z 280.8 → 86.0 for imipramine. The detector response was specific and linear for PF‐04620110 at concentrations within the range 0.05–50 µg/mL and the signal‐to‐noise ratios for the samples were ≥10. The intra‐ and inter‐day precision and accuracy of the method matched the acceptance criteria for assay validation. PF‐04620110 was stable under various processing and/or handling conditions. PF‐04620110 concentrations in the rat plasma samples could be measured up to 24 h after intravenous or oral administration of PF‐04620110, suggesting that the assay is useful for pharmacokinetic studies in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号