共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic Oxo/Imido Heterometathesis by a Well‐Defined Silica‐Supported Titanium Imido Complex 下载免费PDF全文
Dr. Pavel A. Zhizhko Andrey V. Pichugov Nikolai S. Bushkov Dr. Florian Allouche Anton A. Zhizhin Dr. Dmitry N. Zarubin Prof. Dr. Nikolai A. Ustynyuk 《Angewandte Chemie (International ed. in English)》2018,57(34):10879-10882
Grafting Ti(=NtBu)(Me2Pyr)2(py)2 (Me2Pyr= 2,5‐dimethylpyrrolyl, py=pyridine) onto the surface of silica partially dehydroxylated at 700 °C gives the well‐defined silica‐supported Ti imido complex (≡SiO)Ti(=NtBu)(Me2Pyr)(py)2, which is fully characterized by IR and solid‐state NMR spectroscopy as well as elemental and mass balance analyses. While stoichiometric imido‐transfer reactivity is typical for Ti imides, the obtained surface complex is unique in that it enables catalytic transformations involving Ti imido and oxo intermediates. In particular, it efficiently catalyzes imidation of carbonyl compounds with N‐sulfinylamines by oxo/imido heterometathesis. 相似文献
2.
3.
Nicholas Sheng Loong Tan Andrew B. Lowe 《Angewandte Chemie (International ed. in English)》2020,59(13):5008-5021
This Minireview details the current state‐of‐the‐art relating to (co)polymerizations mediated by well‐defined RhI‐ethynyl, vinyl, and aryl complexes. In particular, we focus on RhI species suitable for the (co)polymerization of phenylacetylenes, arylisocyanides, as well as propargyl esters and amides. 相似文献
4.
Ru(II) complexes of the general formula [RuCl2(′′)(L)] (1: ′N = Nb, L = MeOH; 2: ′N = Nb, L = CH3CN; 3: ′N = Nd, L = CH3CN; 4: ′N = Np, L = CH3CN), [Ru(p‐cymene)(a–b)Cl]Cl (5a: N Na = 2,2′‐bipyridine; 5b: N Nb = 4,4′‐dimethyl–2,2′‐bipyridine), [Ru(′′)(a–b)Cl]Cl (6a: ′N = Nb, a = 2,2′‐bipyridine; 6b: ′N = Nb, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 7a: ′N = Nd, a = 2,2′‐bipyridine; 7b: ′N = Nd, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 8a: ′N = Np, a = 2,2′‐bipyridine; 8b: ′N = Np, b = 4,4′‐dimethyl‐2,2′‐bipyridine) and [Ru(′′)(a)Cl]BF4 (9a: ′N = Nb; a = 2,2′‐bipyridine) were synthesized from the corresponding [RuCl2(p‐cymene)]2 dimer, ′′ and a–b ligands. The compounds were characterized by elemental analysis, IR and NMR. Complex 9a was studied by X‐ray diffraction, confirming its cationic‐mononuclear [RuCl(bb)(a)]+ nature. The synthesized Ru(II) complexes (1–8) were employed as catalysts for the transfer hydrogenation of ketones to secondary alcohols in the presence of KOH using 2‐propanol as a hydrogen source at 82°C. The rates of the transfer hydrogenation reactions strongly depended on the type of and ancillary ligands. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Interconversion of Molybdenum Imido and Amido Complexes by Proton‐Coupled Electron Transfer 下载免费PDF全文
Máté J. Bezdek Prof. Paul J. Chirik 《Angewandte Chemie (International ed. in English)》2018,57(8):2224-2228
Interconversion of the molybdenum amido [(PhTpy)(PPh2Me)2Mo(NHtBuAr)][BArF24] (PhTpy=4′‐Ph‐2,2′,6′,2“‐terpyridine; tBuAr=4‐tert‐butyl‐C6H4; ArF24=(C6H3‐3,5‐(CF3)2)4) and imido [(PhTpy)(PPh2Me)2Mo(NtBuAr)][BArF24] complexes has been accomplished by proton‐coupled electron transfer. The 2,4,6‐tri‐tert‐butylphenoxyl radical was used as an oxidant and the non‐classical ammine complex [(PhTpy)(PPh2Me)2Mo(NH3)][BArF24] as the reductant. The N?H bond dissociation free energy (BDFE) of the amido N?H bond formed and cleaved in the sequence was experimentally bracketed between 45.8 and 52.3 kcal mol?1, in agreement with a DFT‐computed value of 48 kcal mol?1. The N?H BDFE in combination with electrochemical data eliminate proton transfer as the first step in the N?H bond‐forming sequence and favor initial electron transfer or concerted pathways. 相似文献
6.
Selective Hydrogen Generation from Formic Acid with Well‐Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN3‐Pincer Ligand 下载免费PDF全文
Dr. Yupeng Pan Dr. Cheng‐Ling Pan Yufan Zhang Dr. Huaifeng Li Dr. Shixiong Min Dr. Xunmun Guo Dr. Bin Zheng Dr. Hailong Chen Addison Anders Prof. Zhiping Lai Prof. Junrong Zheng Prof. Kuo‐Wei Huang 《化学:亚洲杂志》2016,11(9):1357-1360
An unsymmetrically protonated PN3‐pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. 相似文献
7.
8.
Catalytic Water Oxidation by Ruthenium(II) Quaterpyridine (qpy) Complexes: Evidence for Ruthenium(III) qpy‐N,N′′′‐dioxide as the Real Catalysts 下载免费PDF全文
Yingying Liu Dr. Siu‐Mui Ng Dr. Shek‐Man Yiu Dr. William W. Y. Lam Xi‐Guang Wei Dr. Kai‐Chung Lau Prof. Tai‐Chu Lau 《Angewandte Chemie (International ed. in English)》2014,53(52):14468-14471
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation. 相似文献
9.
Ekaterina S. Smirnova Anna A. Melekhova Vladislav V. Gurzhiy Stanislav I. Selivanov Dmitrii V. Krupenya Dr. Igor O. Koshevoy Prof. Dr. Sergey P. Tunik 《无机化学与普通化学杂志》2012,638(2):415-422
Reactions of [Cu(NCMe)4]+ with stoichiometric amount of diphosphine R2P–(C6H4)n–PR2, (R = NC4H4, n = 1; R = Ph, n = 1, 2, 3) or tri‐phosphine 1, 3, 5‐(PPh2–C6H4–)3–C6H3 ligands give the corresponding di‐ or trinuclear copper(I) acetonitrile‐phosphine complexes 1 – 5 . Substitution of the labile acetonitrile groups with chelating aromatic diimines – 2, 2′‐bipyridine (bpy), 1, 10‐phenanthroline (phen), 5, 6‐dimethyl‐1, 10‐phenanthroline (dmp), 5, 6‐dibromo‐1, 10‐phenanthroline (phenBr2) – gives the corresponding substituted compounds 6 – 16 . In all complexes 1 – 16 each central CuI atom has tetrahedral configuration completed with two N‐ and two P‐donor groups. The compounds obtained were characterized using elemental analysis, ESI‐MS, X‐ray crystallography, and NMR spectroscopy. All phosphine‐diimine compounds 6 – 16 are photoluminescent at room temperature both in dichloromethane solution and in solid state (λex = 385 nm). In CH2Cl2 solution the maxima of emission bands are found in a range 540–640 nm, and in solid in a similar range 538–620 nm. Emission of 6 – 16 is assigned to the triplet excited state dominated by the charge transfer transitions with contribution of the MLCT character. 相似文献
10.
Jaroslaw Chojnacki Elke Baum Ingo Krossing Duncan Carmichael Francois Mathey Hansgeorg Schnckel 《无机化学与普通化学杂志》2001,627(6):1209-1212
The solid state structure of η5‐2,5‐di‐(t‐butyl)phospholylgallium(I) 1 was determined by X‐ray diffraction at 190 K. The molecules of 1 are partly organized in a for sandwich complexes new type of structure: a Ga zigzag chain in which the aromatic phospholyl rings alternate on both sides of the chain. 相似文献
11.
12.
Dr. Andreas Stasch 《Angewandte Chemie (International ed. in English)》2014,53(5):1338-1341
The assembly of well‐defined large cluster compounds of ionic light metal hydrides is a synthetic challenge and of importance for synthesis, catalysis, and hydrogen storage. The synthesis and characterization of a series of neutral and anionic pyrazolate‐stabilized lithium hydride clusters with inorganic cores in the nanometer region is now reported. These complexes were prepared in a bottom‐up approach using alkyl lithium and lithium pyrazolate mixtures with silanes in hydrocarbon solutions. Structural characterization using synchrotron radiation revealed isolated cubic clusters that contain up to 37 Li+ cations and 26 H? ions. Substituted pyrazolate ligands were found to occupy all corners and some edges for the anionic positions. 相似文献
13.
Cover Picture: Selective Hydrogen Generation from Formic Acid with Well‐Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN3‐Pincer Ligand (Chem. Asian J. 9/2016) 下载免费PDF全文
Dr. Yupeng Pan Dr. Cheng‐Ling Pan Yufan Zhang Dr. Huaifeng Li Dr. Shixiong Min Dr. Xunmun Guo Dr. Bin Zheng Dr. Hailong Chen Addison Anders Prof. Zhiping Lai Prof. Junrong Zheng Prof. Kuo‐Wei Huang 《化学:亚洲杂志》2016,11(9):1294-1294
14.
15.
Well‐Defined Copper(I) Fluoroalkoxide Complexes for Trifluoroethoxylation of Aryl and Heteroaryl Bromides 下载免费PDF全文
Ronglu Huang Yangjie Huang Xiaoxi Lin Mingguang Rong Prof. Dr. Zhiqiang Weng 《Angewandte Chemie (International ed. in English)》2015,54(19):5736-5739
Copper(I) fluoroalkoxide complexes bearing dinitrogen ligands were synthesized and the structure and reactivity of the complexes toward trifluoroethoxylation, pentafluoropropoxylation, and tetrafluoropropoxylation of aryl and heteroaryl bromides were investigated. 相似文献
16.
Feng Gao Hui Chao Yuan‐Fang Wei Yi‐Xian Yuan Bin Peng Xin Chen Kang‐Cheng Zheng Liang‐Nian Ji 《Helvetica chimica acta》2008,91(3):395-410
Two new complexes, [Ru(phen)2(ppd)]2+ ( 1 ) and [Ru(phen)(ppd)2]2+ ( 2 ) (ppd=pteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, phen=1,10‐phenanthroline) were synthesized and characterized by ES‐MS, 1H‐NMR spectroscopy, and elemental analysis. The intercalative DNA‐binding properties of 1 and 2 were investigated by absorption‐spectroscopy titration, luminescence‐spectroscopy studies, thermal denaturation, and viscosity measurements. The theoretical aspects were further discussed by comparative studies of 1 and 2 by means of DFT calculations and molecular‐orbital theory. Photoactivated cleavage of pBR322 DNA by the two complexes were also studied, and 2 was found to be a much better photocleavage reagent than 1 . The mechanism studies revealed that singlet oxygen and the excited‐states redox potentials of the complex may play an important role in the DNA photocleavage. 相似文献
17.
Metallosupramolecular Structures Derived from a Series of Diphosphine‐bridged Digold(I) Metalloligands with Terminal d‐Penicillamine 下载免费PDF全文
In this report, we describe our recent work on the development of a new family of chiral heteroleptic digold(I) metalloligands with mixed diphosphine and d ‐penicillaminate (d ‐pen), [Au2(dppx)(d ‐pen‐S)2]2– (dppx = PPh2(CH2)nPPh2, n = 1–5) and their application for the construction of chiral multinuclear and metallosupramolecular structures. The reactions of the metalloligands with 3d metal ions produce a variety of chiral heterobimetallic structures retaining the digold(I) metalloligand structure, ranging from discrete trinuclear to infinite helix structures that depend on the type of dppx. In addition, monophosphine and triphosphine analogues of the metalloligands were designed, and their coordination behavior is discussed to show the essential properties and potential extensibility of this class of metalloligands. 相似文献
18.
New hybrid ligands are reported that combine two types of popular donor groups within a single linear scaffold, viz., a central pyrazolate bridge and two appended bis(N‐heterocyclic carbene) units; the ligand strands thus provide two potentially tridentate {NCC} compartments. The pyrazole/tetraimidazolium proligands, [H5L1](PF6)4 and [H5L2](PF6)4 , were synthesized via multi‐step protocols, and the NH prototropy of [H5L1](PF6)4 was examined by variable temperature (VT) NMR spectroscopy, giving solvent dependent activation parameters (ΔH? = 27.6 kJ · mol–1, ΔS? = –125 J · mol–1 · K–1 in [D3]MeCN; ΔH? = 40.4 kJ · mol–1, ΔS? = –86.9 J · mol–1 · K–1 in [D6]DMSO) that are in the range typical for pyrazoles. Reaction of the proligands with Ag2O gave hexametallic complexes [Ag6(L1)2](PF6)4 and [Ag6(L2)2](PF6)4 that involve all six potential donor atoms of the ligands, viz. the four CNHC and two Npz donors, in metal coordination. X‐ray crystallography revealed a chair‐like central {Ag6} deck in both complexes but different arrangements of the ligand strands, which goes along with significantly different AgI ··· AgI distances that indicate more pronounced argentophilic interactions in case of [Ag6(L1)2]4 +. 相似文献
19.
20.
Sandra Bolaño Jorge Bravo Prof. Dr. Jesús Castro Soledad García‐Fontán Elvira Lamas Pilar Rodríguez Seoane 《无机化学与普通化学杂志》2009,635(15):2503-2510
Hydrido complexes [MnH(CO)3L1–3] [L1 = 1,2‐bis‐(diphenylphosphanoxy)‐ethane ( 1 ); L2 = 1,2‐bis‐(diisopropylphosphanoxy)ethane ( 2 ); L3 = 1,3‐bis‐(diphenylphosphanoxy)‐propane ( 3 )] were prepared by treating [MnH(CO)5] with the appropriate bidentate ligand by heating to reflux. Photoirradiation of a toluene solution of complexes 1 and 2 in the presence of PPhn(OR)3–n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydrido compounds of formula [MnH(CO)2(L1–2)(L)] [L = P(OMe)3 ( 1a – 2a ); P(OEt)3 ( 1b – 2b ); PPh(OMe)2 ( 1c – 2c ); PPh(OEt)2 ( 1d – 2d )]. All complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopy. In case of compounds 2 and 3 , suitable crystals for X‐ray diffraction studies were isolated. 相似文献