首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, CE coupled with electrochemiluminesence (ECL) detection using a 76‐μm Pt disk as working electrode was developed for nicotine (NIC) determination. The major metabolite of NIC is cotinine (COT), which has a similar tertiary amine structure to NIC. However, there is a carbonyl group attached in the structure of COT, which leads to the great decrease in ECL response. In order to improve the ECL response of COT, NaBH4 was used for carbonyl reduction. After reduction, NIC and COT were separated and detected by CE‐ECL. ECL response plotted with NIC concentration was linear between 5.0×10?7 and 5.0×10?5 mol/L (81–8100 μg/L), with LOD of 5.0×10?8 mol/L (8.1 μg/L). The developed CE‐ECL method was applied for NIC determination in urine and cigarette samples.  相似文献   

2.
A novel method for the determination of ephedra alkaloids (methylephedrine and pseudoephedrine) was developed by electrophoresis capillary (CE) separation and electrochemiluminesence detection (ECL). The use of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4) improved the detection sensitivity markedly. The conditions for CE separation, ECL detection and effect of ionic liquid were investigated in detail. The two ephedra alkaloids with very similar structures were well separated and detected under the optimum conditions. The limits of detection (signal‐to‐noise ratio = 3) in standard solution were 1.8 × 10–8 mol/L for methylephedrine (ME) and 9.2 × 10–9 mol/L for pseudoephedrine (PSE). The limits of quantitation (signal‐to‐noise ratio = 10) in human urine samples were 2.6 × 10?7 mol/L for ME and 3.6 × 10–7 mol/L for PSE. The recoveries of two alkaloids at three different concentration levels in human urine samples were between 81.7 and 105.0%. The proposed method was successfully applied to the determination of ME and PSE in human urine and the monitoring of pharmacokinetics for PSE. The proposed method has potential in therapeutic drug monitoring and clinical analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive approach for the simultaneous determination of tilmicosin, erythromycin ethylsuccinate and clindamycin was developed by CE coupled with electrochemiluminescence detection with ionic liquid. The parameters for CE, electrochemiluminescence detection and the effect of ionic liquid were investigated systematically. The three analytes were well separated and detected within 8 min. The limits of detection (S/N=3) of tilmicosin, erythromycin ethylsuccinate and clindamycin are 3.4×10?9, 2.3×10?8 and 1.3×10?8 mol/L, respectively. The precisions (RSD%) of the peak area and the migration time are from 0.8 to 1.5% and from 0.2 to 0.5% within a day and from 1.8 to 2.7% and from 0.6 to 0.8% in 3 days, respectively. The limits of quantitation (S/N=10) of tilmicosin, erythromycin ethylsuccinate and clindamycin are 3.2×10?8, 2.9×10?7 and 9.1×10?8 mol/L in human urines and 5.5×10?8, 3.2×10?7 and 2.1×10?7 mol/L in milk samples, respectively. The recoveries of three analytes at different concentration levels in urine, milk and drugs are between 90.0 and 104.7%. The proposed method was successfully applied to the determination of three analytes in human urine, milk and drugs.  相似文献   

4.
A sensitive method for simultaneous determination of azithromycin (AZI), acetylspiramycin (ACE), erythromycin (ERY), and josamycin (JOS) was developed by CE coupled with electrochemiluminescence detection with Ru(bpy)32+. The parameters related to separation and detection were investigated in detail. The four macrolides were well separated and detected within 6 min under the optimized conditions. The LOD (S/N=3) of AZI, ACE, ERY, and JOS were 1.2×10?9, 7.1×10?9, 3.9×10?8 and 9.5×10?8 mol/L, respectively. The LOQ (S/N=10) of AZI, ACE, ERY, and JOS in human urine were 8.2×10?8, 2.5×10?7, 8.9×10?7 and 1.2×10?6 mol/L, respectively. The recoveries of the four macrolides in human urine and pharmaceutical tablet samples were 85.0–104.0% at different concentration levels.  相似文献   

5.
《Electroanalysis》2004,16(3):169-174
A fast and sensitive approach to detect reserpine in urine using micellar electrokinetic capillary chromatography with electrochemiluminescence (ECL) of Ru(bpy)32+ detection is described. Using a 25 μm i.d. capillary as separation column, the ECL detector was coupled to the capillary in the absence of an electric field decoupler. Field‐amplified injection was used to minimize the effect of ionic strength in the sample and to achieve high sensitivity. In this way, the sample was analyzed directly without any pretreatment. The method was validated for reserpine in the urine over the range of 1×10?6?1×10?4 mol/L with a correlation coefficient of 0.996. The RSD for reserpine at a level of 5 μmol/L was 4.3%. The LOD (S/N=3) was estimated to be 7.0×10?8 mol/L. The average recoveries for 10 μmol/L reserpine spiked in human urine were 94%.  相似文献   

6.
A carbon fiber paste electrode using ionic liquid as the binder (CFILE) was fabricated. The electrochemical characteristics of the electrode was examined in ferro‐/ferricyanide solution and showed better conductivity and reversibility when compared with graphite paste‐ionic liquid electrode (GPILE) and a little better than that on the carbon nanotube paste‐ionic liquid electrode (CNTILE). Glyphosate (GLY), a pesticide, exhibited excellent catalysis to the oxidation of Ru(bpy)2+3 on CFILE and brought an obvious enhancement to the electrochemiluminescence (ECL) intensity of Ru(bpy)2+3. Based on the catalytic ability of GLY, a simple ECL method for GLY detection had been established. Under optimum conditions, the enhanced ECL intensities were found to had linearly respond to the GLY concentration between 3.0×10?7 and 3.0×10?5 mol/L, and the detection limit (S/N=3) was 2.0×10?7 mol/L. The electrode also showed excellent sensitivity in detecting GLY‐spiked soybean samples. The linear range for GLY in soybean samples was 1.0×10?6–4.0×10?5 mol/L and the detection limit was 5.0×10?7 mol/L, equal to 8.45 µg GLY in per gram of soybean. The detection limit in soybean sample was lower than the USA, EU regulation and so on. If the method is coupled with the separation technology, it can be applied to detect the GLY in the contaminated samples.  相似文献   

7.
A new molecularly imprinted electrochemical luminescence sensor (MIP‐ECL sensor) was developed for isoproturon (IPU) determination based on the competition reaction between IPU and glucose oxidase labeled IPU (GOD‐IPU). After competition, hydrogen peroxide produced by residual GOD‐IPU on the MIP reacted with luminol to emit electrochemiluminescence (ECL) signal. The ECL intensity decreased when the GOD‐IPU molecules were replaced by IPU molecules in the samples. IPU could be determined in the concentration range from 9×10?11 mol/L to 5.1×10?9 mol/L with a detection limit of 3.78×10?12 mol/L. Water samples were assayed and recoveries ranging from 98.5 % to 102.1 % were obtained.  相似文献   

8.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

9.
A capillary electrophoresis coupled with tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)32+) electrochemiluminescence detection system was developed to determine salbutamol and clenbuterol in urine. Some factors that affected the performances of separation and detection were investigated. Under the optimized conditions, one single quantitative analysis of salbutamol and clenbuterol was achieved at a separation voltage of 15 kV within 9 min, and the LODs (S/N=3) and LOQs (S/N=10) of salbutamol and clenbuterol were 8.43×10?8 mol/L, 2.61×10?7 mol/L and 2.73×10?7 mol/L, 8.21×10?7 mol/L, respectively. The recovery obtained from the analysis of spiked urine samples was between 88.6 % and 104.7 % with RSDs lower than 6.70 %. The method was successfully applied to determine salbutamol and clenbuterol in urine samples.  相似文献   

10.
《Electroanalysis》2005,17(18):1675-1680
We developed a sensitive, simple and low cost method to determine methimazole based on capillary electrophoresis with electrochemical detection (CE‐EC) at a carbon fiber microdisk electrode (CFE). We investigated the effects of detection potential, the concentration and pH value of the phosphate buffer, and injection time as well as separation voltage on the detection of methimazole. Under the optimized conditions: the detection potential at 1.30 V, 10 mmol/L phosphate buffer (pH 7.0), injection time 30 s at a height of 20 centimeter and separation voltage at 15 kV, the linear range was obtained from 1.0×10?7 to 2.0×10?4 mol/L, covering 3 orders of magnitude with a correlation coefficient of 0.9995. The LOD (S/N=3) obtained was 5.0×10?8 mol/L. The RSD of migration time and peak current for 2.0×10?4 mol/L methimazole was 1.04% and 1.54% (n=10), respectively. The method was also used to analyze methimazole tablets and human urine sample.  相似文献   

11.
A new strategy for trace analysis was proposed by preparing a molecularly imprinted polymer (MIP) sensor. The template molecules of clopyralid were determined based on “gate-controlled” electrochemiluminescence (ECL) measurement. A dense polymer film was electropolymerized on an electrode surface to fabricate the MIP–ECL sensor. The process of template elution and rebinding acted as a gate to control the flux of probes, which pass through the cavities and react on the electrode surface. ECL measurement was conducted in the luminol–H2O2 system. A linear relationship between ECL intensity and clopyralid concentrations in the range of 1?×?10?9 mol/L to 8?×?10?7 mol/L exists, and the detection limit was 3.7?×?10?10 mol/L. The prepared sensor was used to detect clopyralid in vegetables. Recoveries of 97.9 % to 102.9 % were obtained. The sensor showed highly selective recognition, high sensitivity, good stability, and reproducibility for clopyralid detection.  相似文献   

12.
Bao Y  Yang F  Yang X 《Electrophoresis》2011,32(12):1515-1521
A CE‐electrochemiluminescence(CE‐ECL) detection system, CE/tris(2,2′‐bipyridyl) ruthenium(II)ECL with ionic liquid, was established for the determination of diester‐diterpenoid aconitum alkaloids (aconitine (AC), mesaconitine (MA) and hypaconitine (HA)) in traditional Chinese herbal medicine. Running buffer containing 25 mM borax‐20 mM 1‐ethyl‐3‐methylimidazolium tetrafluoroborate at pH 9.15 was used, which resulted in significant changes in separation and obvious enhancement in ECL intensity for AC, MA and HA with similar structures. End‐column detection was achieved in 50 mM phosphate buffer with 5 mM (pH 9.15) at applied detection voltage of 1.20 V when the distance between the Pt working electrode and outlet of capillary (50 cm×25 μm id) was set at 150 μm. One single quantitative analysis of three alkaloids was achieved at a separation voltage of 15 kV within 10 min. Moreover, two extraction processes (ethanol extraction and ethyl ether extraction after basification) were investigated. The result showed that ethanol extraction process has higher extraction efficiency than ethyl ether extraction process. Under the optimized conditions, the detection limits of AC, MA and HA were 5.62×10?8, 2.78×10?8 and 3.50×10?9 mol/L (S/N=3), respectively. The method was successfully applied to determine the amounts of AC, MA and HA in the aconitum herbal samples.  相似文献   

13.
A novel and simple method is presented for the determination of norfloxacin, ciprofloxacin, and ofloxacin by capillary electrophoresis with chemiluminescence detection. This method is based on the enhancing effect of quinolones on the chemiluminescence reaction of the Ce(SO4)2–Ru(bpy)32+–HNO3 system. Three quinolones were successfully separated and detected under optimum conditions. The obtained detection limits were 2.3×10–7 mol/L, 5.2×10–8 mol/L, and 7.8×10–8 mol/L for ciprofloxacin, norfloxacin, and ofloxacin, respectively. The RSD of migration time and peak area were less than 1.8 and 3.8% (n = 5), respectively. The applicability of the proposed method was illustrated in the determination of ofloxacin in eye drops and of norfloxacin in human urine samples, and the monitoring of pharmacokinetics for norfloxacin.  相似文献   

14.
《Analytical letters》2012,45(14):2234-2245
A novel chemiluminescence (CL) method is developed for determination of ofloxacin and levofloxacin with Ag(III) complex in H2SO4 solution medium. The CL intensity is proportional to drug concentration in a wider range with a correlation coefficient of 0.999. The limit of detection (s/n = 3) for ofloxacin and levofloxacin was 5.3 × 10?9 g ml?1 and 8.3 × 10?9 g ml?1, respectively, and their recoveries from urine and serum samples were in the range of 90.1–112% with the RSDs of 1.0–2.8%. The proposed method was applied for analysis of real samples with satisfactory result. The possible CL mechanism was discussed.  相似文献   

15.
The possibility of using ionic liquid based chitosan sorbent for the separation and preconcentration of fluoroquinolone antibiotics (marbofloxacin, enoxacin, ofloxacin, ciprofloxacin, and enrofloxacin) has been studied. For this reason, different ionic liquids were prepared and coated on the chitosan sorbent. The conditions of the preconcentration of fluoroquinolones on a microcolumn have been optimized and the extraction efficiencies of the prepared sorbents have been compared. The compounds were eluted with 5 mL of 20% NH3 (v/v, MeOH) solution and determined by HPLC with diode array and fluorescence detector. The limits of detection were found as 4.23 µ g L?1 for marbofloxacin, and 1.09 µg L?1 for enoxacin; 3.23 × 10?3 µg L?1 for ofloxacin; 8.39 × 10?3 µg L?1 for ciprofloxacin; and 19.50 × 10?3 µg L?1 for enrofloxacin. The developed method was applied for the analysis of fluoroquinolone in milk, egg, fish, bovine, and chicken samples and the recoveries were obtained in the range 70–100%.  相似文献   

16.
A simple, rapid and sensitive CE method has been proposed for the determination of gatifloxacin in biological fluid. This method is based on the ECL reaction of gatifloxacin and tris(2,2'‐bipyridyl)ruthenium(II) occurred in the end‐column detection cell. Under the optimal conditions, gatifloxacin can be assayed within 10 min over the concentration range of 5.0×10?8?5.0×10?6 g/mL with the theoretical plate numbers of 18 000. The intra‐day and inter‐day precision of the signal intensity and the migration time shows acceptable reproducibility for the analysis of gatifloxacin. The presented method has been successfully applied to determine the concentrations of gatifloxacin in urine and blood samples after clean‐up using C18 SPE column.  相似文献   

17.
《Analytical letters》2012,45(4):626-636
A new chemiluminescence system of Tb3+/K2S2O8 was developed for the determination of albumin. Some experimental conditions were examined and optimized. The linear ranges of the calibration curves are 5.0 × 10?9–5.0 × 10?6 mol/L for bovine serum albumin, 5.0 × 10?8–1.0 × 10?5 mol/L for human serum albumin and 2.5 × 10?7–1.0 × 10?5 mol/L for ovalbumin, and the corresponding detection limits are 1.9 × 10?9 mol/L, 1.5 × 10?8 mol/L, and 1.5 × 10?7 mol/L, respectively. The method was applied to the determination of albumin in human serum samples, and the results were in agreement with those obtained by the bromcresol green method. The relative errors for the analytical results were from ?2.0% to 4.3%.  相似文献   

18.
In this study, we developed an analytical method for the enantioseparation of ofloxacin, using capillary electrophoresis with fluorescence detection. The optimum background electrolyte was obtained to be 60 mM hydroxylpropyl‐β‐cyclodextrin (HP‐β‐CD) in 50 mM phosphate buffer at pH 2.30. Under these conditions, the (+) and (‐) ofloxacin were completely separated, with the detection limit of 10 nM when the sample was prepared in deionized water. The linear ranges of levofloxacin in deionized water and untreated urine were 10?7 to 5 × 10?3 M with R2 = 0.9989 and 5 × 10?6to 5 × 10?3 M with R2 = 0.9943, respectively. We also applied this method to investigate the purity of a commercial drug. The results revealed that the ratio between (+)‐ofloxacin and (‐)‐ofloxacin (levofloxacin) was 99.9:0.1, and there is about 93 mg levofloxacin per tablet (200 mg). The concentration of levofloxacin in patient's urine was founded to be 7.9 × 10?4M, and the ratio between the two optical isomers was 99.3:0.7.  相似文献   

19.
Yulong Gao  Tao Wang  Fengyu Liu 《中国化学》2016,34(12):1297-1303
The electrochemiluminescence (ECL) of the Ru(phen)32+/thymine (T) system at bare and graphene oxide (GO)‐modified glassy carbon (GC) electrodes was utilized to determine Hg2+ in tap water. The ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of thymine because of the occurrence of ECL reaction between them. Subsequently, the ECL intensity of Ru(phen)32+/T system rapidly decreased with the addition of Hg2+ because of the formation of a T‐Hg2+‐T complex. A linear response (R2=0.9914) was obtained over a Hg2+ concentration range of 1.0×10?9 mol/L to 1.0×10?5 mol/L with a detection limit of 3.4×10?10 mol/L at a bare GC electrode in 0.1 mol/L phosphate buffer (pH=8.0). The detection limit can be further reduced to 4.2×10?12 mol/L after modification of the GC electrode by GO. To verify its applicability, the proposed method was utilized to determine Hg2+ in tap water and simulated wastewater. The method exhibited good reproducibility and stability and thus reveals the possibility of developing a novel ECL detection method for Hg2+.  相似文献   

20.
The electrochemiluminescent (ECL) behavior of lucigenin on a multiwall carbon nanotubes modified glassy carbon electrode (MWNT/GCE) during anodic scanning was studied. A strong and stable anodic ECL signal was found on MWNT modified electrode, which results from the oxidation reaction between lucigenin and the oxidation production of OH-. The effects of electrode materials, pH and scan rate on the ECL intensity were studied, and the possible ECL mechanism was also proposed. Under the optimized conditions, the ECL intensity was found to be linear with concentration of lucigenin in the range of 5.0 × 10?7–5.0 × 10?6 mol/L with a detection limit of 2.0 × 10?7 mol/L. Superoxide dimutase (SOD) was found to be able to inhibit this ECL system, based on which a sensitive ECL methods for detection of SOD had been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号