首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photophysical properties of intramolecular charge transfer (ICT) in a novel tribranched donor–π–acceptor chromophore, triphenoxazine‐2,4,6‐triphenyl‐1,3,5‐triazine (tri‐PXZ‐TRZ), with thermally activated delayed fluorescence character was investigated in different aprotic solvents by steady‐state spectroscopy and femtosecond and nanosecond transient absorption spectroscopy measurements. Increasing the solvent polarity led to a significant increase in the Stokes shift. The large Stokes shift in highly polar solvents was attributed to ICT properties upon excitation; this resulted in a strong interaction between the tri‐PXZ‐TRZ molecule and the surrounding solvent, which led to a strong solvation process. Quantum‐chemical calculations and changes in the dipole moment showed that this compound has a large degree of ICT. Furthermore, an apolar environment helped to preserve the symmetry of tri‐PXZ‐TRZ and to enhance its emission efficiency. The femtosecond and nanosecond transient absorption spectroscopy results indicated that the excited‐state dynamics of this push–pull molecule were strongly influenced by solvent polarity through the formation of a solvent‐stabilized ICT state. The excited‐state relaxation mechanism of tri‐PXZ‐TRZ was proposed by performing target model analysis on the femtosecond transient absorption spectra. In addition, the delayed fluorescence of tri‐PXZ‐TRZ was significantly modulated by a potential competition between solvation and intersystem crossing processes.  相似文献   

2.
Summary: The silylene–π conjugating polymer, poly(di‐n‐hexylsilylenephenylene‐ethynylenephenylene) ( 1 ) adopted a fairly flexible coil‐like conformation due to the bent structure of silylene moiety and showed a unique photoexcited energy transfer behavior. The UV‐vis absorption and steady‐state/time‐resolved photoluminescence studies revealed the occurrence of an intramolecular photoexcited energy transfer (IET) between locally excited π* to charge transfer ground states as well as an intramolecular charge transfer (ICT).

The silylene–π conjugating polymer, poly(di‐n‐hexylsilylenephenylene‐ethynylenephenylene) showing a unique photoexcited energy transfer behavior.  相似文献   


3.
The photophysical signature of the tautomeric species of the asymmetric (N,N‐dimethylanilino)‐1,3‐diketone molecule are investigated using approaches rooted in density functional theory (DFT) and time‐dependent DFT (TD‐DFT). In particular, since this molecule, in the excited state, can undergo proton transfer reactions coupled to intramolecular charge transfer events, the different radiative and nonradiative channels are investigated by making use of different density‐based indexes. The use of these tools, together with the analysis of both singlet and triplet potential energy surfaces, provide new insights into excited‐state reactivity allowing one to rationalize the experimental findings including different behavior of the molecule as a function of solvent polarity.  相似文献   

4.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

5.
While organic donor‐acceptor (D‐A) molecules are widely employed in multiple areas, the application of more D‐A molecules could be limited because of an inherent polarity sensitivity that inhibits photochemical processes. Presented here is a facile chemical modification to attenuate solvent‐dependent mechanisms of excited‐state quenching through addition of a β‐carbonyl‐based polar substituent. The results reveal a mechanism wherein the β‐carbonyl substituent creates a structural buffer between the donor and the surrounding solvent. Through computational and experimental analyses, it is demonstrated that the β‐carbonyl simultaneously attenuates two distinct solvent‐dependent quenching mechanisms. Using the β‐carbonyl substituent, improvements in the photophysical properties of commonly used D‐A fluorophores and their enhanced performance in biological imaging are shown.  相似文献   

6.
A series of 1-naphthanilides (1) and 2-naphthanilides (2) with varied substituents at the para- or meta-position of anilino phenyl ring were prepared and their absorption and fluorescence spectra in a nonpolar solvent cyclohexane were investigated. An abnormal long wavelength emission assigned to the charge transfer (CT) state was found for all of the prepared naphthanilides in cyclohexane. A linear free energy correlation between the CT emission energies and the Hammett constants of the substituent was found within series 1 and 2. The value of the linear slope with 1 (0.42 eV) was higher than that with 2 (0.32 eV) being close to that of the substituted benzanilides 3 (0.31 eV) The higher slope value suggested higher charge separation extent in the CT state of 1 than that of 2. It was found that the corresponding linear slope of anilino-substituted benzanilides remained unchanged when para-, meta-, ortho-, or ortho, ortho-methyls were introduced into the anilino moiety, which ruled out the possible contribution of the difference in the steric effect and the electron accepting ability of the naphthoyl acceptor in 1 and 2. Compared with the early reported N-substituted-benzoyl-aminonaphthalene derivatives 4 and 5, it was considered that 1-naphthoyl enhanced the charge transfer in 1 and the proximity of its ^1La and ^1Lb states was suggested to be responsible. It was shown that 1- and/or 2-substituted naphthalene cores acting as either electron acceptor (naphthoyl) or electron donor (aminonaphthalene) were different in not only electron accepting (donating) ability but also shaping the charge transfer pathway.  相似文献   

7.
T‐shaped π‐conjugated molecules with an N‐methyl‐benzimidazole junction have been synthesized and their acid‐responsive photophysical properties owing to the change in the π‐conjugation system are discussed. T‐shaped π‐conjugated molecules consist of two orthogonal π‐conjugated systems including a phenyl thiophene extended from the 2‐position and alkyl phenylenes connected through various π‐spacers from the 4,7‐positions of the N‐methyl‐benzimidazole junction. The π‐spacers, such as thiophene, ethyne, and ethane, have an effect on the acid response of photophysical properties in terms of changes in conformation, excited‐state energy and charge‐transfer (CT) characteristics. In particular, the π‐conjugated molecule with ethynyl spacers exhibited a marked redshift in the fluorescence spectrum with a large Stokes shift upon the addition of acid, whereas the other molecules showed substantial quenching. The redshift in emission was studied in detail by temperature‐dependent fluorescence measurements, which indicated the transition to a CT state over the finite activation energy at the excited state. The change in the frontier molecular orbitals upon acid addition was further discussed by means of DFT calculations.  相似文献   

8.
The push–pull character of a series of donor–bithienyl–acceptor compounds has been tuned by adopting triphenylamine or 1,1,7,7‐tetramethyljulolidine as a donor and B(2,6‐Me2‐4‐RC6H2)2 (R=Me, C6F5 or 3,5‐(CF3)2C6H3) or B[2,4,6‐(CF3)3C6H2]2 as an acceptor. Ir‐catalyzed C?H borylation was utilized in the derivatization of the boryl acceptors and the tetramethyljulolidine donor. The donor and acceptor strengths were evaluated by electrochemical and photophysical measurements. In solution, the compound with the strongest acceptor, B[2,4,6‐(CF3)3C6H2]2 ((FMes)2B), has strongly quenched emission, while all other compounds show efficient green to red (ΦF=0.80–1.00) or near‐IR (NIR; ΦF=0.27–0.48) emission, depending on solvent. Notably, this study presents the first examples of efficient NIR emission from three‐coordinate boron compounds. Efficient solid‐state red emission was observed for some derivatives, and interesting aggregation‐induced emission of the (FMes)2B‐containing compound was studied. Moreover, each compound showed a strong and clearly visible response to fluoride addition, with either a large emission‐color change or turn‐on fluorescence.  相似文献   

9.
Pyrimidine‐based diboron complexes bearing β‐iminoenolate ligands and phenyl groups as bulky substituents on the boron atoms were synthesized as novel fluorescent dyes, and their fluorescence properties were investigated in solution and in the solid state. The diboron complexes with donor–π–acceptor structures showed positive solvatochromism in the fluorescence spectra. The cyano derivative exhibited the most dramatic redshift of the fluorescence maximum Fmax with increasing solvent polarity (from 551 nm in n‐hexane to 710 nm in acetonitrile). The diboron complexes showed solid‐state fluorescence in the range of 578–706 nm with fluorescence quantum yields of 0.06–0.28. Additionally, the trifluoromethyl derivative exhibited solvent‐inclusion solid‐state fluorescence. The trifluoromethyl derivative formed toluene‐inclusion and ethyl acetate‐inclusion crystals. The toluene‐inclusion crystal (Fmax=668 nm, Φf=0.16) showed a blueshifted Fmax and higher Φf value compared to the original trifluoromethyl derivative (Fmax=694 nm, Φf=0.08) in the solid state. On the other hand, the Fmax (709 nm) and Φf (0.04) values of the ethyl acetate‐inclusion crystal were redshifted and lower, respectively.  相似文献   

10.
The synthesis of a series of dithienosilole–benzotriazole donor–acceptor statistical copolymers with various donor–acceptor ratios is reported, prepared by Kumada catalyst‐transfer polymerization. Statistical copolymer structure is verified by 1H NMR and optical absorption spectroscopy, and supported by density functional theory (DFT) calculations. The copolymers exhibit a single optical absorption band that lies between dithienosilole and benzotriazole homopolymers, which shifts with varying donor–acceptor content. A chain extension experiment using a partially consumed benzotriazole solution as a macroinitiator followed by addition of dithienosilole leads to the synthesis of a statistical dithienosilole–benzotriazole block copolymer from a pure benzotriazole block, demonstrating that both chain extension and simultaneous monomer incorporation are possible using this methodology.

  相似文献   


11.
Functional organic materials that display reversible changes in fluorescence in response to external stimuli are of immense interest owing to their potential applications in sensors, probes, and security links. While earlier studies mainly focused on changes in photoluminescence (PL) color in response to external stimuli, stimuli‐responsive electroluminescence (EL) has not yet been explored for color‐tunable emitters in organic light‐emitting diodes (OLEDs). Here a stimuli‐responsive fluorophoric molecular system is reported that is capable of switching its emission color between green and orange in the solid state upon grinding, heating, and exposure to chemical vapor. A mechanistic study combining X‐ray diffraction analysis and quantum chemical calculations reveals that the tunable green/orange emissions originate from the fluorophore's alternating excited‐state conformers formed in the crystalline and amorphous phases. By taking advantage of this stimuli‐responsive fluorescence behavior, two‐color emissive OLEDs were produced using the same fluorophore in different solid phases.  相似文献   

12.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

13.
From the viewpoint of parameta topological bridging effect on the electronic coupling in organic mixed‐valence (MV) systems, the optically induced and thermally assisted intramolecular charge/spin transfer (ICT/IST) processes have been investigated for three bis(triarylamine) (BTA) radical cations as missing key compounds in very basic BTA MV systems. In contrast to the case of p‐ and m‐dinitrobenzene radical anions, the difference in the strength of electronic coupling (V) was not so large for the present BTA MV radical cations, although they still fall within the paradigm of strong V for para‐linkage and weak V for meta‐linkage. Unexpectedly, it has been found that meta‐phenylenediamine radical cation has an electronic coupling comparable to those in the para‐conjugated BTA‐based MV species, and the ICT/IST rate exceeds the ESR time‐scale. This finding is very encouraging considering that sufficient electronic communication can be ensured even when the redox‐active centers are linked directly by the meta‐phenylene bridge, thus broadening the selection of π‐bridging units for molecule‐based optoelectronics.  相似文献   

14.
Eleven new, stable, push–pull systems that feature 4,5‐bis[4‐(N,N‐dimethylamino)phenyl]imidazole and 4,5‐dicyanoimidazole as the donor and acceptor moieties and the systematically extended and varied π‐linker were prepared and investigated. Evaluation of the measured UV/Vis spectra, electrochemical data (cyclic voltammetry (CV), rotating‐disc voltammetry (RDV), and polarography) and calculated β and γ polarizabilities showed efficient charge transfer (CT) in biimidazole‐type chromophores. Push–pull system 27 , which features a planar thiophene‐derived π‐linker, was revealed to be the most efficient chromophore within the studied series. This chromophore possessed the most bathochromically shifted CT band, the lowest electrochemical gap, and highest β and γ polarizabilities. The CT transition was most significantly affected by structural features such as π‐linker length, planarity, conjugating arrangement, and the presence of olefinic/acetylenic or 1,4‐phenylene/thiophene subunits in the π‐linker.  相似文献   

15.
Photochromic 1,2‐dithienylethene (DTE) derivatives with a high thermal stability and fatigue resistance are appealing for optical switching of fluorescence. Here, we introduce a donor–photochromic bridge–acceptor tetraphenylethene‐dithienylethene‐perylenemonoimide (TPE‐DTE‐PMI) triad, in which TPE acts as the electron donor, PMI as the electron acceptor, and DTE as the photochromic bridge. In this system, the localized and intramolecular charge transfer emission of TPE‐DTE‐PMI with various Stokes shifts have been observed due to the photoinduced intramolecular charge transfer in different solvents. Upon UV irradiation, the fluorescence quenching resulting from photochromic fluorescence resonance energy transfer in TPE‐DTE‐PMI has been demonstrated in solution and in solid films. The fluorescence on/off switching ratio in polymethylacrylate film exceeds 100, a value much higher than in polymethylmethacrylate film, thus indicating that the fluorescence switching is dependent on matrices.  相似文献   

16.
17.
Charge‐transfer (CT) assemblies of aromatic donor (D) and acceptor (A) molecules have recently gained attention as a promising material for organic electronics and ferroelectrics. Two major factors which govern their functions are the strength of CT interaction and their supramolecular nanostructuring. Here we present coronene‐naphthalenediimide (NDI)‐based novel D‐A pairs that form alternately stacked CT assemblies. Through systematic substitution of the NDI derivatives and studying their CT interactions with coronene, a clear understanding of the secondary forces responsible for controlling their association is gained. Finally, the use of CT‐based supramolecular amphiphiles for their nanostructural engineering into ordered one‐dimensional (1‐D) assemblies is demonstrated.  相似文献   

18.
A “frozen” electron donor–acceptor array that bears porphyrin and fullerene units covalently linked through the ortho position of a phenyl ring and the nitrogen of a pyrrolidine ring, respectively, is reported. Electrochemical and photophysical features suggest that the chosen linkage supports both through‐space and through‐bond interactions. In particular, it has been found that the porphyrin singlet excited state decays within a few picoseconds by means of a photoinduced electron transfer to give the rapid formation of a long‐lived charge‐separated state. Density functional theory (DFT) calculations show HOMO and LUMO to be localized on the electron‐donating porphyrin and the electron‐accepting fullerene moiety, respectively, at this level of theory. More specifically, semiempirical molecular orbital (MO) configuration interaction (CI) and unrestricted natural orbital (UNO)‐CI methods shed light on the nature of the charge‐transfer states and emphasize the importance of the close proximity of donor and acceptor for effective electron transfer.  相似文献   

19.
Time‐resolved fluorescence and transient absorption experiments uncover a distinct change in the relaxation dynamics of the homo‐dimer formed by two 2,5‐bis[1‐(4‐N‐methylpyridinium)ethen‐2‐yl)]‐N‐methylpyrrole ditriflate ( M ) units linked by a short alkyl chain when compared to that of the monomer M . Fluorescence decay traces reveal characteristic decay times of 1.1 ns and 210 ps for M and the dimer, respectively. Transient absorption spectra in the spectral range of 425–1050 nm display similar spectral features for both systems, but strongly differ in the characteristic relaxation times gathered from a global fit of the experimental data. To rationalize the data we propose that after excitation of the dimer the energy localizes on one M branch and then decays to a dark state, peculiar only of the dimer. This dark state relaxes to the ground state within 210 ps through non‐radiative relaxation. The nature of the dark state is discussed in relation to different possible photophysical processes such as excimer formation and charge transfer between the two M units. Anisotropy decay traces of the probe‐beam differential transmittance of M and the dimer fall on complete different time scales as well. The anisotropy decay for M is satisfactorily ascribed to rotational diffusion in DMSO, whereas for the dimer it occurs on a faster time scale and is likely caused by energy‐transfer processes between the two monomer M units.  相似文献   

20.
The systematic synthesis and photophysical, electrochemical and computational studies on an extended series of triphenylamine‐[C?C‐1,4‐C6H2(OR)2]n‐C?C‐diphenyl‐1,3,4‐oxadiazole dyad molecules (the OR groups are at 2,5‐positions of the para‐phenylene ring and R=C6H13; n=0–5, compounds 1 , 2 , 3 , 4 and 5 , respectively) are reported. Related molecules with identical end groups, triphenylamine‐C?C‐1,4‐C6H2(OR)2‐C?C‐triphenylamine (R=C6H13; 6 ) and diphenyl‐1,3,4‐oxadiazole‐[C?C‐C6H2(OR)2]2‐C?C‐diphenyl‐1,3,4‐oxadiazole (R=C6H13; 7 ) were also studied. These D–B–A 1 – 5 , D–B–D 6 and A–B–A 7 (D=electron donor, B=bridge, A=electron acceptor) systems were synthesized using palladium‐catalysed cross‐coupling reactions of new p‐phenyleneethynylene building blocks. Steady‐state emission studies on the dyads 1 – 5 reveal a complicated behavior of the emission that is strongly medium dependent. In low polarity solvents the emission is characterized by a sharp high‐energy peak attributed to fluorescence from a locally excited (LE) state. In more polar environments the LE state is effectively quenched by transfer into an intramolecular charge‐transfer (ICT) state. The medium dependence is also observed in the quantum yields (QYs) which are high in cyclohexane and low in acetonitrile, thus also indicating charge‐transfer character. Low‐temperature emission spectra for 2 – 5 in dichloromethane and diethyl ether also reveal two distinct excited states, namely the LE state and the conventional ICT state, depending on solvent and temperature. Hybrid DFT calculations for 1 – 7 establish that the OPE bridge is involved in both frontier orbitals where the bridge character increases as the bridge length increases. Computed TD‐DFT data on 1 – 5 assign the emission maxima in cyclohexane as LE transitions. Each time‐resolved emission measurement on 2 – 7 in cyclohexane and diethyl ether reveals a wavelength dependent bi‐exponential decay of the emission with a fast component in the 5–61 ps range on blue detection and a slower approximately 1 ns phase, independent of detection wavelength. The fast component is attributed to LE fluorescence and this emission component is rate limited and quenched by transfer into an ICT state. The fast LE fluorescence component varies systematically with conjugation length for the series of D–B–A dyads 2 – 5 . An attenuation factor β of 0.15 Å?1 was determined in accordance with an ICT superexchange mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号