首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A combination of gas‐phase ion–molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC?CLiCl]? reacts with water more rapidly than [HC?CMgCl2]?, consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC?CLiCl]? or [HC?CMgCl2]? enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC?CMgCl2]? enhances its reactivity by a factor of about 4. Ab initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics.  相似文献   

3.
4.
5.
6.
Gas phase reactions between PtHn? cluster anions and CO2 were investigated by mass spectrometry, anion photoelectron spectroscopy, and computations. Two major products, PtCO2H? and PtCO2H3?, were observed. The atomic connectivity in PtCO2H? can be depicted as HPtCO2?, where the platinum atom is bonded to a bent CO2 moiety on one side and a hydrogen atom on the other. The atomic connectivity of PtCO2H3? can be described as H2Pt(HCO2)?, where the platinum atom is bound to a formate moiety on one side and two hydrogen atoms on the other. Computational studies of the reaction pathway revealed that the hydrogenation of CO2 by PtH3? is highly energetically favorable.  相似文献   

7.
The thermal reactions of the closed‐shell, “naked” gold–carbene complex [Au(CH2)]+ with methane have been explored by using FTICR mass spectrometry complemented by quantum chemical (QC) calculations at the CCSD(T)//BMK level of theory. Mechanistic aspects for this unprecedentedly efficient carbene insertion in the C? H bond of methane have been addressed and the origin of the counterintuitive high reactivity of [Au(CH2)]+ towards this most inert hydrocarbon is discussed.  相似文献   

8.
9.
10.
11.
The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium‐doped vanadium cluster cations CeV2O7+ are generated by laser ablation, mass‐selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time‐of‐flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen‐atom transfer , 2) double oxygen‐atom transfer , and 3) C?C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7+, which gives rise to C?C bond cleavage of ethene. Neither CexOy± nor VxOy± alone possess the necessary topological and electronic properties to bring about such a reaction.  相似文献   

12.
The asymmetric catalysis of the intramolecular enone [2+2] photocycloaddition has been subject of extensive experimental studies, however theoretical insight to its regulatory mechanism is still sparse. Accurate quantum chemical calculations at the CASPT2//CASSCF level of theory associated with energy‐consistent relativistic pseudopotentials provide a basis for the first regulation theory that the enantioselective reaction is predominantly controlled by the presence of relativistic effects, that is, spin–orbit coupling resulting from heavy atoms in the chiral Lewis acid catalyst.  相似文献   

13.
14.
15.
As the biological activation and oxidation of water takes place at an inorganic cluster of the stoichiometry CaMn4O5, manganese oxide is one of the materials of choice in the quest for versatile, earth‐abundant water splitting catalysts. To probe basic concepts and aid the design of artificial water‐splitting molecular catalysts, a hierarchical modeling strategy was employed that explores clusters of increasing complexity, starting from the tetramanganese oxide cluster Mn4O4+ as a molecular model system for catalyzed water activation. First‐principles calculations in conjunction with IR spectroscopy provide fundamental insight into the interaction of water with Mn4O4+, one water molecule at a time. All of the investigated complexes Mn4O4(H2O)n+ (n=1–7) contain deprotonated water with a maximum of four dissociatively bound water molecules, and they exhibit structural fluxionality upon water adsorption, inducing dimensional and structural transformations of the cluster core.  相似文献   

16.
17.
A consistent set of group additive values ΔGAV° for 46 groups is derived, allowing the calculation of rate coefficients for hydrocarbon radical additions and β-scission reactions. A database of 51 rate coefficients based on CBS-QB3 calculations with corrections for hindered internal rotation was used as training set. The results of this computational method agree well with experimentally observed rate coefficients with a mean factor of deviation of 3, as benchmarked on a set of nine reactions. The temperature dependence on the resulting ΔGAV°s in the broad range of 300–1300 K is limited to ±4.5 kJ mol−1 on activation energies and to ±0.4 on logA (A: pre-exponential factor) for 90 % of the groups. Validation of the ΔGAV°s was performed for a test set of 13 reactions. In the absence of severe steric hindrance and resonance effects in the transition state, the rate coefficients predicted by group additivity are within a factor of 3 of the CBS-QB3 ab initio rate coefficients for more than 90 % of the reactions in the test set. It can thus be expected that in most cases the GA method performs even better than standard DFT calculations for which a deviation factor of 10 is generally considered to be acceptable.  相似文献   

18.
19.
[FeFe]‐hydrogenases are the best natural hydrogen‐producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range‐separated density functional re‐parametrized to reproduce high‐level ab initio data. An activation free‐energy barrier of 13 kcal mol?1 was obtained for chemical bond formation between the di‐iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner‐sphere electron‐transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed.  相似文献   

20.
The xenon–difluoronitrenium ion F2N? Xe+, a novel xenon–nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF3 by Xe. According to Møller–Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (ΔH and ΔG) of this process are predicted to be ?3 kcal mol?1. The conceivable alternative formation of the inserted isomers FN? XeF+ is instead endothermic by approximately 40–60 kcal mol?1 and is not attainable under the employed ion‐trap mass spectrometric conditions. F2N? Xe+ is theoretically characterized as a weak electrostatic complex between NF2+ and Xe, with a Xe? N bond length of 2.4–2.5 Å, and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol?1, respectively. F2N? Xe+ is more fragile than the xenon–nitrenium ions (FO2S)2NXe+, F5SN(H)Xe+, and F5TeN(H)Xe+ observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon–nitrogen species could be obtained under these experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号