首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly ordered mesoporous three‐dimensional Ia3d silica (KIT‐6) with different pore diameters has been synthesized by using pluronic P123 as surfactant template and n‐butanol as cosolvent at different synthesis temperatures in a highly acidic medium. The materials were characterized by XRD and N2 adsorption. The synthesis temperature plays a significant role in controlling the pore diameter, surface area, and pore volume of the materials. The material prepared at 150 °C, KIT‐6‐150, has a large pore diameter (11.3 nm) and a high specific pore volume (1.53 cm3 g?1). We also demonstrate immobilization of lysozyme, which is a stable and hard protein, on KIT‐6 materials with different pore diameters. The amount of lysozyme adsorbed on large‐pore KIT‐6 is extremely large (57.2 μmol g?1) and is much higher than that observed for mesoporous silicas MCM‐41, SBA‐15, and KIT‐5, mesoporous carbons, and carbon nanocages. The effect of various parameters such as buffer concentration, adsorption temperature, concentration of the lysozyme, and the textural parameter of the adsorbent on the lysozyme adsorption capacity of KIT‐6 was studied. The amount adsorbed mainly depends on solution pH, ionic strength, adsorption temperature, and pore volume and pore diameter of the adsorbent. The mechanism of adsorption on KIT‐6 under different adsorption conditions is discussed. In addition, the structural stability of lysozyme molecules and the KIT‐6 adsorbent before and after adsorption were investigated by XRD, nitrogen adsorption, and FTIR spectroscopy.  相似文献   

2.
3.
4.
Three organosilica‐bridged periodic mesoporous organosilicas were prepared by the immobilization of a chiral N‐sulfonylated diamine‐based organorhodium complex within their silicate network. Structural analysis and characterization confirmed their well‐defined single‐site active rhodium centers, whilst electron microscopy revealed their highly ordered hexagonal mesostructures. Among these three different organosilica‐bridged periodic mesoporous organosilicas, the ethylene‐bridged periodic mesoporous organosilica catalyst exhibited excellent heterogeneous catalytic activity and high enantioselectivity in the aqueous asymmetric transfer hydrogenation of aromatic ketones. This superior catalytic performance was attributed to its salient hydrophobicity, whilst its comparable enantioselectivity relative to the homogeneous catalyst was derived from the confined nature of the chiral organorhodium catalytic sites. Furthermore, this ethylene‐bridged periodic mesoporous organosilica could be conveniently recovered and reused at least 12 times without the loss of its catalytic activity. This feature makes this catalyst attractive for practical organic synthesis in an environmentally friendly manner. This study offers a general way of optimizing the bridged organosilica moiety in periodic mesoporous organosilicas, thereby enhancing its catalytic activity in heterogeneous catalysis.  相似文献   

5.
Flower power : Various mesoporous Co3O4 architectural structures (see figure) have been successfully prepared through a facile binary‐solution route and sequential thermal decomposition at atmospheric pressure. The electrochemical experiments showed that the specific capacitance of Co3O4 nanosheets was higher than that of Co3O4 microspheres in a KOH electrolyte.

  相似文献   


6.
A functionalized periodic mesoporous organosilica with incorporated chiral bis(cyclohexyldiamine)‐based NiII complexes within the silica framework was developed by the co‐condensation of (1R,2R)‐cyclohexyldiamine‐derived silane and ethylene‐bridge silane, followed by the complexation of NiBr2 in the presence of (1R,2R)‐N,N′‐dibenzylcyclohexyldiamine. Structural characterization by XRD, nitrogen sorption, and TEM disclosed its orderly mesostructure, and FTIR and solid‐state NMR spectroscopy demonstrated the incorporation of well‐defined single‐site bis(cyclohexyldiamine)‐based NiII active centers within periodic mesoporous organosilica. As a chiral heterogeneous catalyst, this functionalized periodic mesoporous organosilica showed high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3‐dicarbonyl compounds to nitroalkenes, comparable to those with homogeneous catalysts. In particular, this heterogeneous catalyst could be recovered easily and reused repeatedly up to nine times without obviously affecting its enantioselectivity, thus showing good potential for industrial applications.  相似文献   

7.
8.
Chirally functionalized hollow nanospheres with different surface properties were successfully synthesized by co‐condensation of (2S,1′R,2′R)‐Ntert‐butyloxycarbonylpyrrolidine‐2‐carboxylic acid [2′‐(4‐trimethoxysilylbenzylamide)cyclohexyl] amide with 1,2‐bis(trimethoxysilyl)ethane or tetramethoxysilane using F127 (EO106PO70EO106) as surfactant in water. The TEM and N2 sorption characterizations show that the particle size of the hollow nanosphere is 15–21 nm with a core diameter of 10–16 nm. These L ‐prolinamide‐functionalized hollow nanospheres are highly efficient solid catalysts for the direct asymmetric aldol reaction between cyclohexanone and aromatic aldehydes. It was found that the addition of water in the reaction system not only enhanced the catalytic activity but also increased the enantioselectivity, which is probably due to the enhanced hydrogen bond between the amide oxygen atom and the hydroxyl group of water. Moreover, the catalytic activity increases sharply as the surface hydrophobicity of the hollow nanospheres increases. These hollow nanospheres are quite stable and can be reused with almost the same enantioselectivity and only a slight decrease in catalytic activity.  相似文献   

9.
刘江红  魏晓航  薛健 《化学通报》2019,82(3):209-213
介孔材料是一种具有较大比表面积和高度有序孔道结构的材料,而功能化介孔材料是将介孔材料改性而使其具有不同的功能。这种材料由于具有极好的吸附和催化性能而被广泛应用于环境领域中。本文总结了功能化介孔材料的制备方法,包括引入官能团、掺杂金属和酸改性;探讨分析了几种制备方法下的功能化介孔材料的特点和应用前景;重点介绍了功能化介孔材料在吸附重金属、有机污染物、染料、CO2以及催化领域的研究进展;最后展望了未来功能化介孔材料的应用前景和发展趋势,以期为功能化介孔材料的发展提供参考和指明方向。  相似文献   

10.
The catalytic application of a novel manganese‐containing periodic mesoporous organosilica with ionic‐liquid framework (Mn@PMO‐IL) in the Biginelli reaction was investigated. First, the Mn@PMO‐IL nanocatalyst was prepared and characterized by TEM, SEM, X‐ray photoelectron spectroscopy, and nitrogen‐sorption analysis. The catalyst was then used in the one‐pot Biginelli condensation of various aldehydes with urea and alkyl acetoacetates under solvent‐free conditions. The corresponding dihydropyrimidone products were obtained in high to excellent yields and selectivities at short reaction times. Moreover, the catalyst was recovered and successfully reused many times with no notable decrease in activity and selectivity.  相似文献   

11.
A facile method for the fabrication of well‐dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core–shell–corona type triblock copolymer [poly(styrene‐b‐2‐vinylpyridine‐b‐ethylene oxide), PS‐b‐P2VP‐b‐PEO] is employed as the pore‐directing agent. Negatively charged PtCl42? ions preferably interact with the protonated P2VP+ blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry.  相似文献   

12.
采用溶胶凝胶法合成了一系列有序性好且酸性较强的介孔硅铝酸盐材料。利用X射线粉末衍射(XRD)、透射电镜(TEM)、27Al核磁共振(27Al NMR)、氨气程序升温脱附(HN3-TPD)及吡啶吸附红外光谱(Py-FT-IR)对制备的介孔硅铝酸盐材料的结构和性能进行表征,并考察了材料在苯甲醚和苯甲醇的傅克烷基化反应中的催化活性。实验结果表明:合成过程中,表面活性剂的用量、硅铝物质的量的比会影响材料结构的有序性,醋酸用量对材料结构有序性影响很小;进一步研究结果表明,nSi / nAl比会影响材料的酸催化活性,当nSi / nAl=10时材料的酸催化活性最高。氨气程序升温脱附和吡啶吸附红外光谱表明nSi / nAl=10的材料含有最多的B酸酸量。  相似文献   

13.
采用溶胶凝胶法合成了一系列有序性好且酸性较强的介孔硅铝酸盐材料。利用X射线粉末衍射(XRD)、透射电镜(TEM)、27Al核磁共振(27Al NMR)、氨气程序升温脱附(HN3-TPD)及吡啶吸附红外光谱(Py-FT-IR)对制备的介孔硅铝酸盐材料的结构和性能进行表征,并考察了材料在苯甲醚和苯甲醇的傅克烷基化反应中的催化活性。实验结果表明:合成过程中,表面活性剂的用量、硅铝物质的量之比会影响材料结构的有序性,醋酸用量对材料结构有序性影响很小;进一步研究结果表明,nSi/nAl比会影响材料的酸催化活性,当nSi/nAl=10时材料的酸催化活性最高。氨气程序升温脱附和吡啶吸附红外光谱表明nSi/nAl=10的材料含有最多的B酸酸量。  相似文献   

14.
15.
16.
Dual‐mesoporous ZSM‐5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co‐templates. The product contains two types of mesopores—smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30–50 nm in diameter along the b axis—and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual‐mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry.  相似文献   

17.
18.
19.
20.
Bringing order : A new class of periodic mesoporous organosilicas (PMOs) with a urea‐bridged organosilica precursor under acid‐catalyzed and inorganic‐salt‐assisted conditions was obtained. The large‐pore hybrid materials have ordered mesostructure with uniform pore size distributions, which can be seen from the TEM images.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号