首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This Communication describes a new light‐controlled release system based on molecular recognition of cyclodextrins. Azobenzene (Azo) residue is employed as a photoresponsive guest residue because it can switch the partner from α‐cyclodextrin (αCD) to β‐cyclodextrin (βCD) by irradiation with UV light. Poly(sodium acrylate)s possessing αCD, βCD, and Azo residues (pAαCD, pAβCD, and pAAzo, respectively) are mixed in aqueous solutions to form aggregates through the formation of inclusion complexes of Azo with αCD and/or βCD. A chemical cargo, 1‐pyrenemethylammonium chloride (PyMA), is contained in the aggregates, and its release behavior is investigated by dialysis experiments under UV irradiation. These data indicate that the amount of PyMA released for the pAαCD/pAβCD/pAAzo ternary mixture is approximately three times as high as those for the pAαCD/pAAzo and pAβCD/pAAzo binary mixtures because of the light‐controlled rearrangement of inclusion complexes.

  相似文献   


2.
3.
4.
Free radical terpolymerization of (N,N)‐dimethylacrylamide, ethylene‐glycol‐dimethacrylate and N‐(p‐ or m‐ethyl‐phenyl)acrylamide leads to para‐ and meta‐ethyl‐phenyl‐modified hydrophilic polymer networks. Polymeric networks of different molar ratios are prepared in special molds to give water swellable disc‐ shaped samples. The swelling behavior in water and aqueous cyclodextrin (CD) solution of the obtained samples is described while a distinctive differentiation between the para‐ and meta‐ethyl‐phenyl containing networks in CD solution can be found.

  相似文献   


5.
6.
A cyclic zinc(II) bisporphyrin with flexible linker was employed as a dynamic molecular switch under the regulation of π‐acceptors (tetracyanoquinodimethane, trinitrofluorenone, 9‐dicyanomethylenefluorene) and bidentate N‐donor ligands (1,4‐diazabicyclo[2.2.2]octane, pyrazine, 4,4′‐bipyridine). The cyclic bisporphyrin host can efficiently encapsulate the π‐acceptor guests through the strong π–π interaction, which can be replaced again by using a bidentate N‐donor ligand, which coordinates strongly with the metal centers. The open conformation of the bisporphyrin can be efficiently recovered by removing the bidentate ligands using Cu+ ion. During the process, two porphyrin rings also reversibly change their relative orientation between perpendicular and parallel. The behavior of the cyclic bisporphyrin was followed by using UV/Vis, 1H NMR, fluorescence, and electrochemical analyses along with X‐ray structure determination of the complexes. Moreover, control of photoinduced electron transfer (PET “ON‐OFF”) is also achieved by the use of guest exchange. Association constants for the host–guest binding were very high, which further explains the robust nature of such assemblies in solution. The experimental evidence is supported by DFT calculations. Such controllable dynamic features can constitute a new step towards "smart" adaptive molecular devices and the emergence of such systems is of significant interest in supramolecular chemistry.  相似文献   

7.
The size‐ and orientation‐selective formation of the shortest‐possible C70 peapod in solution and in the solid state by using the shortest structural unit of an “armchair” carbon nanotube (CNT), cycloparaphenylene (CPP), has been studied. [10]CPP and [11]CPP exothermically formed 1:1 complexes with C70, thereby giving the resulting peapods. A van′t Hoff plot analysis revealed that the formation of these complexes in 1,2‐dichlorobenzene was mainly driven by entropy, whereas the theoretical calculations suggested that the formation of the complex in the gas phase was predominantly driven by enthalpy. C70 was found to exist in two distinct orientations inside the CPP cavity, namely “lying” and “standing”, depending on the specific size of the CPP. The theoretical calculations and the X‐ray crystallographic analysis revealed that the interactions between [10]CPP and the short axis of C70 in its lying orientation were isotropic and similar to those observed between [10]CPP and C60. However, the interactions between [11]CPP and C70 in its standing orientation were anisotropic, thereby involving the radial deformation of [11]CPP into an ellipsoidal shape. This “induced fit” maximized the van der Waals interactions with the long axis of C70. Theoretical calculations revealed that the deformation occurred readily with low energy loss, thus suggesting that CPPs are highly radially elastic molecules. These results also indicate that the same type of radial deformation should occur in CNT peapods that encapsulate anisotropic fullerenes.  相似文献   

8.
《化学:亚洲杂志》2017,12(14):1824-1835
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C60/C70) through strong π–π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C60/C70). During the guest‐exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X‐ray crystal structure determination of the host–guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C60/C70 in the respective host–guest assemblies. The cyclic host can form complexes with C60 and C70 with association constants of (2.8±0.2)×105 and (1.9±0.3)×108 m −1, respectively; the latter value represents the highest binding affinity for C70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C70 versus C60 allows the easy extraction and efficient isolation of C70 from a C60/C70 fullerene mixture. Experimental evidence was substantiated by DFT calculations.  相似文献   

9.
The first example of a bis‐hemithioindigo (bis‐HTI)‐based molecular receptor was realized. Its folding and selective binding affinity for aromatic guest molecules can be precisely controlled by visible light and heat. The thermodynamically stable state of the bis‐HTI is the s‐shaped planar Z,Z‐configuration. After irradiation with 420 nm light only the E,Z‐configuration is formed in a highly selective photoisomerization. The E,Z‐isomer adopts a helical conformation because of the implementation of repulsive steric interactions. The E,Z‐configured helix is able to recognize electron‐poor aromatic guests exclusively through polar aromatic interactions and also distinguishes between regioisomers. After heating, the Z,Z‐configuration is completely restored and the aromatic guest molecule is efficiently released.  相似文献   

10.
11.
A cyclophane is reported incorporating two units of a heptagon‐containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa‐peri‐hexabenzocoronene (HBC) moiety (hept‐HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven‐membered rings within extended PAH frameworks. The saddle curvature of the hept‐HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m ?1 and Ka=(6.49±0.23)×103 m ?1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

12.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

13.
As a synthetic model for intra‐protein interactions that reinforce binding affinities between proteins and ligands, the energetic interplay of binding and folding was investigated using foldamer‐based receptors capable of adopting helical structures. The receptors were designed to have identical hydrogen‐bonding sites for anion binding but different aryl appendages that simply provide additional π‐stacking within the helical backbones without direct interactions with the bound anions. In particular, the presence of electron‐deficient aryl appendages led to dramatic enhancements in the association constant between the receptor and chloride or nitrate ions, by up to three orders of magnitude. Extended stacking within the receptor contributes to the stabilization of the entire folding structure of complexes, thereby enhancing binding affinities.  相似文献   

14.
15.
By introducing a flexible component into a molecular building block, we present an unprecedented alkyl‐decorated flexible crystalline material with a breathing behavior. Its selective adsorption is derived from the breathing effect induced by a guest triggered alkyl transformation. This feature allows the crystal to take up 2.5 mmol g?1 of chloroform with high adsorption selectivity (CHCl3/EA >2000 for example), implying a potential application in sorption separation and chemical sensors.  相似文献   

16.
New tripodal squaramide‐based hosts have been synthesised and structurally characterised by spectroscopic methods. In 2.5 % (v/v) [D6]DMSO in CDCl3, compound 4 formed dimeric assemblies [log Kdim=3.68(8)] as demonstrated by 1H NMR spectroscopy and UV dilution experiments. AFM and SEM analyses revealed the formation of a network of bundled fibres, which indicates a preferential mechanism for aggregation. These C3‐symmetric tripodal hosts exhibited two different and mutually exclusive modes of binding, each one easily accessible by simultaneous reorientation of the squaramide groups. In the first, a convergent disposition of the NH squaramide protons allowed the formation of an array of N? H???X? hydrogen bonds with anions. In the second mode, reorientation of carbonyl squaramide groups allowed multiple C?O???H interactions with ammonium cations. The titration of 4 with different tetraalkylammonium iodides persistently showed the formation of 1:1 complexes, as well as 1:2 and 1:3 complexes. The corresponding stoichiometries and binding affinities of the complexes were evaluated by multi‐regression analysis. The formation of high‐order complexes, supported by ROESY, NOESY and mass spectrometry experiments, has been attributed to the insertion of NR4I ion pairs between the carbonyl and NH protons of the squaramide groups located in adjacent arms of 4 . The observed effects reflect the induction of significant conformational changes in the hosts, mainly in relation to the relative orientation of the squaramide groups adapting their geometries to incoming ion‐pair complementary substrates. The results presented herein identify and fully describe two different modes of ion‐pair recognition aimed at directing conformational transitions in the host, therefore establishing a base for controlling more elaborate movements of molecular devices through ion‐pair recognition.  相似文献   

17.
18.
Single‐walled carbon nanotubes (SWNTs) that are covalently functionalized with benzoic acid (SWNT‐PhCOOH) can be integrated with transition‐metal ions to form 3D porous inorganic–organic hybrid frameworks (SWNT‐Zn). In particular, N2‐adsorption analysis shows that the BET surface area increases notably from 645.3 to 1209.9 m2 g?1 for SWNTs and SWNT‐Zn, respectively. This remarkable enhancement in the surface area of SWNT‐Zn is presumably due to the microporous motifs from benzoates coordinated to intercalated zinc ions between the functionalized SWNTs; this assignment was also corroborated by NLDFT pore‐size distributions. In addition, the excess‐H2‐uptake maximum of SWNT‐Zn reaches about 3.1 wt. % (12 bar, 77 K), which is almost three times that of the original SWNTs (1.2 wt. % at 12 bar, 77 K). Owing to its inherent conductivity and pore structure, as well as good dispersibility, SWNT‐Zn is an effective candidate as a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs): By using solid‐phase extraction (SPE) with SWNT‐Zn‐modified glassy carbon electrode, the detection limit of methyl parathion (MP) is 2.3 ng mL?1.  相似文献   

19.
By introducing slight structural modifications to a D4‐symmetric coordination capsule, we succeeded in isolating the nearly enantiopure capsules (P)‐ and (M)‐ 2 a (BF4)4. Chiral guest, dibenzyl 4,4′‐diacetoxy‐6,6′‐dimethyl‐[1,1′‐biphenyl]‐2,2′‐dicarboxylate ( 3 ) was encapsulated within the dissymmetric cavity of 2 a (BF4)4, resulting in a high diastereoselectivity of >99 % de. The encapsulated guest was successfully removed from the complex without racemization through precipitation of the empty capsule. CD spectra confirmed that the chirality of the capsule was maintained in THF and 1,4‐dioxane for long periods, whereas a small amount of acetonitrile accelerated racemization of the empty capsule. The activation parameters of the racemization reaction were determined in dichloromethane and 1,2‐dichloroethane, resulting in positive enthalpic contributions and large negative entropic contributions, respectively. Accordingly, the racemization fits a first‐order kinetic model. Mechanically coupled Cu+‐2,2′‐bipyridine coordination centers were responsible for the high‐energy barrier of racemization and led to the unique chiral memory of the dissymmetric cavity, which was turned off by the addition of acetonitrile.  相似文献   

20.
Triple duty : A synthetic molecular clip traps nicotinamide adenine dinucleotide phosphate (NADP+; see picture) as well as occupying both the cofactor‐ and the substrate‐binding site in glucose‐6‐phosphate (G6P) dehydrogenase. This combination of two inhibition mechanisms makes the clip highly effective and selective for this enzyme over other dehydrogenases.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号