共查询到20条相似文献,搜索用时 15 毫秒
1.
Dr. Ran Lin Ka‐Ho Lee Dr. Ka Chun Poon Dr. Herman H. Y. Sung Prof. Ian D. Williams Prof. Zhenyang Lin Prof. Guochen Jia 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(45):14885-14899
Treatment of Na[Re(CO)5] with RC?CCO2Et (R=phenyl, naphthalen‐1‐yl, phenanthren‐9‐yl and pyren‐1‐yl) followed by reaction with acetyl chloride and ethanol afforded the rhenacyclobutadienes Re{‐C(R)?C(CO2Et)C(OEt)?}(CO)4. Reactions of these rhenacyclobutadienes with HC?COEt produced rhenabenzenes Re{‐C(R)?C(CO2Et)C(OEt)?CHC(OEt)?}(CO)4. Except for R=Ph, new rhenacyclobutadienes with pendant alkenyl substituents Re{‐C(R)?C(C(OEt)?CH(CO2Et))C(OEt)?}(CO)4 were also isolated from these reactions. The NMR spectroscopic and X‐ray structural data, as well as the aromatic stabilization energy (ASE) values suggest that the rhenabenzenes are aromatic, with extensive delocalized π character. 相似文献
2.
3.
Dr. Jiangxi Chen Chuan Shi Dr. Herman H. Y. Sung Prof. Ian D. Williams Prof. Zhenyang Lin Prof. Guochen Jia 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(44):14128-14139
Reactions of [ReH5(PMe2Ph)3] with alkynols HC≡CC(OH)(R)C≡CSiMe3 (R=tBu, iPr, 1‐adamantyl) in the presence of HCl give the vinylcarbyne complexes [Re{≡CCH?C(R)C≡CSiMe3}Cl2(PMe2Ph)3], which react with tBuMgCl to give [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3]. Treatment of [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3] with nBu4NF gives [Re{≡CCH?C(R)C≡CH}HCl(PMe2Ph)3], which first isomerizes to the bicyclic complexes [Re{CH?CH? C(R)?CCH?}Cl(PMe2Ph)3], and then to the rhenabenzynes [Re{≡CCH?C(R)CH?CH}Cl(PMe2Ph)3]. The NMR spectroscopic and structural data as well as the aromatic stabilization energy (ASE) and nucleus‐independent chemical‐shift (NICS) values suggest that these rhenabenzynes have aromatic character. 相似文献
4.
Dr. Jiangxi Chen Dr. Ka‐Ho Lee Dr. Herman H. Y. Sung Prof. Dr. Ian D. Williams Prof. Dr. Zhenyang Lin Prof. Dr. Guochen Jia 《Angewandte Chemie (International ed. in English)》2016,55(25):7194-7198
The 12‐membered‐ring metallacycles [mer‐Re{≡CCH=C(R)C≡C?}Cl(PMe2Ph)3)]2 (R=CMe3, 1‐adamantyl), which are organometallic analogues of antiaromatic octadehydro[12]annulene, are prepared by heating the methyl carbyne complexes mer‐Re{≡CCH=C(R)C≡CH}(CH3)Cl(PMe2Ph)3. An intermolecular σ‐bond metathesis between the Re?CH3 bond and the acetylenic C?H bond is proposed for their formation. 相似文献
5.
Metallacyclobutadienes are analogues of cyclobutadienes in which one of the cyclobutadiene CR groups has been formally replaced by a transition‐metal fragment. These metallacycles are interesting because they can play an important role in catalysis and can serve as starting materials for the syntheses of organometallic compounds such as metallabenzene, η5‐cyclopentadienyl, and η3‐cyclopropenyl complexes. Unlike cyclobutadienes, metallacyclobutadienes can be significantly more stable. A number of metallacyclobutadienes have now been isolated and thoroughly characterized, especially for those that contain transition metals of groups 5–9. Their properties have also been actively investigated. This article highlights the chemistry of metallacyclobutadienes with reference to their syntheses, reactivity, and structural properties. 相似文献
6.
7.
Dr. Jose S. S. Neto Prof. Dr. Gilson Zeni 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(37):8175-8189
The easy preparation and functionalization of pyrazoles associated with their innumerable biological properties have made this class of N-heterocycles very attractive for the development of new synthetic routes and applications. The cyclization reactions of alkynes and nitrogen compounds represent a powerful tool for the preparation of pyrazoles. This Review covers the recent advances in the preparation of pyrazoles by reacting alkynes and nitrogen compounds under transition-metal-catalyzed or metal-free conditions. 相似文献
8.
Dr. Yongliang Zhang Botao Wu Dr. Mingdong Zhong Prof. Dr. Wen-Xiong Zhang Prof. Dr. Zhenfeng Xi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(69):16472-16479
Transition-metal alkylidenes have exhibited wide applications in organometallic chemistry and synthetic organic chemistry, however, cyclic Schrock-carbene-like bis-alkylidenes of group 4 metals with a four-electron donor from an alkylidene have not been reported. Herein, the synthesis and characterization of five-membered cyclic bis-alkylidenes of titanium ( 4 a , b ) and zirconium ( 5 a , b ) are reported, as the first well-defined group 4 metallacyclopentatrienes, by two-electron reduction of their corresponding titana- and zirconacyclopentadienes. DFT analyses of 4 a show a four-electron donor (σ-donation and π-donation) from an alkylidene carbon to the metal center. The reaction of 4 a with N,N′-diisopropylcarbodiimide (DIC) leads to the [2+2]-cycloaddition product 6 . Compound 4 a reacted with CO, affording the oxycyclopentadienyl titanium complex 7 . These reactivities demonstrate the multiple metal–carbon bond character. The reactions of 4 a or 5 a with cyclooctatetraene (COT) or azobenzene afforded sandwich titanium complex 8 or diphenylhydrazine-coordinated zirconacyclopentadiene 9 , respectively, which exhibit two-electron reductive ability. 相似文献
9.
10.
Hong Zhang Dr. Ran Lin Guangning Hong Tongdao Wang Ting Bin Wen Prof. Dr. Haiping Xia Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(23):6999-7007
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ). 相似文献
11.
12.
13.
The reaction of dimethyl acetylenedicarboxylate (DMAD) with [Pt(SiHPh(2))(2)(PMe(3))(2)] produces cis-[Pt(CZ=CZ-SiHPh(2))(SiHPh(2))(PMe(3))(2)] (cis-1, Z = COOMe) and [Pt(CZ=CZ-SiPh(2))(PMe(3))(2)] (2) depending on the reaction conditions. cis-1 and 2 are equilibrated in solution at room temperature, and they are isolated by recrystallization of the mixtures. cis-1 is converted slowly in solution into trans-[Pt(CZ=CZ-SiHPh(2))(SiHPh(2))(PMe(3))(2)] (trans-1) via intermediate 2 followed by reaction with H(2)SiPh(2). DMAD also reacts with [Pt(SiHPh(2))(2)(dmpe)] (dmpe = 1,2-bis(dimethylphosphino)ethane) to afford [Pt(CZ=CZ-SiHPh(2))(SiHPh(2))(dmpe)] (3). Conversion of 3 into 4-sila-3-platinacyclobutene [Pt(CZ=CZ-SiPh(2))(dmpe)] (4) takes place, accompanied by formation of H(2)SiPh(2), to give an equilibrated mixture of the two complexes. Crystallographic and spectroscopic data of cis-1, trans-1, and 3 suggest the presence of an intramolecular interaction between the Si-H group of the 3-sila-1-propenyl ligand and Pt via an Si-H-Pt three-center-four-electron bond in the solid state and in solution. DMAD reacts with 2 to give 5-sila-2-platina-1,4-cyclohexadiene with pi-coordinated DMAD, [Pt(CZ=CZ-SiPh(2)-CZ=CZ)(DMAD)(PMe(3))(2)] (5), which is also obtained from the reaction of excess DMAD with [Pt(SiHPh(2))(2)(PMe(3))(2)]. Unsymmetrical six-membered silaplatinacycles without pi-coordinated alkyne, [Pt(CZ=CZ-SiPh(2)-CH=CX)(PMe(3))(2)] (6: X = COOMe; 7: X = Ph), are prepared analogously from the respective reactions of phenyl acetylene and of methyl acetylene carboxylate with 2. Methyl 2-butynolate reacts with 2 at 50 degrees C to form a mixture of the regioisomers [Pt(CZ=CZ-SiPh(2)-CMe=CZ)(PMe(3))(2)] (8) and [Pt(CZ=CZ-SiPh(2)-CZ=CMe)(PMe(3))(2)] (9). 相似文献
14.
15.
Regiospecific Formation and Unusual Optical Properties of 2,5‐Bis(arylethynyl)rhodacyclopentadienes: A New Class of Luminescent Organometallics 下载免费PDF全文
Dr. Andreas Steffen Dr. Richard M. Ward Dr. Meng Guan Tay Dr. Robert M. Edkins Dr. Fabian Seeler Magda van Leeuwen Dr. Lars‐Olof Pålsson Prof. Dr. Andrew Beeby Dr. Andrei S. Batsanov Prof. Dr. Judith A. K. Howard Prof. Dr. Todd B. Marder 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(13):3652-3666
A series of 2,5‐bis(arylethynyl)rhodacyclopentadienes has been prepared by a rare example of regiospecific reductive coupling of 1,4‐(p‐R‐phenyl)‐1,3‐butadiynes (R?H, Me, OMe, SMe, NMe2, CF3, CO2Me, CN, NO2, ?C?C‐(p‐C6H4?NHex2), ?C?C?(p‐C6H4?CO2Oct)) at [RhX(PMe3)4] ( 1 ) (X=?C?C?SiMe3 ( a ), ?C?C‐(p‐C6H4?NMe2) ( b ), ?C?C?C?C?(p‐C6H4?NPh2) ( c ) or ?C?C?{p‐C6H4‐C?C?(p‐C6H4‐N(C6H13)2)} ( d ) or Me ( e )), giving the 2,5‐bis(arylethynyl) isomer exclusively. The rhodacyclopentadienes bearing a methyl ligand in the equatorial plane (compound 1 e ) have been converted into their chloro analogues by reaction with HCl etherate. The rhodacycles thus obtained are stable to air and moisture in the solid state and the acceptor‐substituted compounds are even stable to air and moisture in solution. The photophysical properties of the rhodacyclopentadienes are highly unusual in that they exhibit, exclusively, fluorescence between 500–800 nm from the S1 state, with quantum yields of Φ=0.01–0.18 and short lifetimes (τ=0.45–8.20 ns). The triplet state formation (ΦISC=0.57 for 2 a ) is exceptionally slow, occurring on the nanosecond timescale. This is unexpected, because the Rh atom should normally facilitate intersystem crossing within femto‐ to picoseconds, leading to phosphorescence from the T1 state. This work therefore highlights that in some transition‐metal complexes, the heavy atom can play a more subtle role in controlling the photophysical behavior than is commonly appreciated. 相似文献
16.
17.
Hata T Sujaku S Hirone N Nakano K Imoto J Imade H Urabe H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(51):14593-14602
Treatment of ethyl (E)‐5,5‐bis[(benzyloxy)methyl]‐8‐(N,N‐diethylcarbamoyl)‐2‐octen‐7‐ynoate with an iron reagent generated from FeCl2 and tBuMgCl in a ratio of 1:4 (abbreviated as FeCl2/4 tBuMgCl) afforded ethyl [4,4‐bis[(benzyloxy)methyl]‐2‐[(E)‐(N,N‐diethylcarbamoyl)methylene]cyclopent‐1‐yl]acetate in good yield. Deuteriolysis of an identical reaction mixture afforded the bis‐deuterated product ethyl [4,4‐bis[(benzyloxy)methyl]‐2‐[(E)‐(N,N‐diethylcarbamoyl)deuteriomethylene]cyclopent‐1‐yl]deuterioacetate, thus confirming the existence of the corresponding dimetalated intermediate. The latter intermediate can react with halogens or aldehydes to facilitate further synthetic transformations. The amount of FeCl2 was reduced to catalytic levels (10 mol % relative to enyne), and catalytic cyclizations of this sort proceeded with yields comparable to those of the aforementioned stoichiometric reactions. The cyclization of diethyl (E,E)‐2,7‐nonadienedioate with a stoichiometric amount of FeCl2/4 tBuMgCl, followed by the addition of sBuOH as a proton source, afforded a mixture of 2‐(ethoxycarbonyl)‐3‐bicyclo[3.3.0]octanone and its enol form in good yield. The use of aldehyde or ketone in place of sBuOH afforded 2‐(ethoxycarbonyl)‐3‐bicyclo[3.3.0]octanone, which has an additional hydroxyalkyl side chain. Additionally, the metalation of a carbon–carbon unsaturated bond in N,N‐diethyl‐5,5‐bis[(benzyloxy)methyl]‐7,8‐epoxy‐2‐octynamide or (E)‐3,3‐dimethyl‐6‐(N,N‐diethylcarbamoyl)‐5‐hexenyl p‐toluenesulfonate with FeCl2/4 tBuMgCl or FeCl2/4 PhMgBr was followed by an intramolecular alkylation with an epoxide or alkyl p‐toluenesulfonate to afford 5,5‐bis[(benzyloxy)methyl]‐3‐[(E)‐(N,N‐diethylcarbamoyl)methylene]‐1‐cyclohexanol or N,N‐diethyl(3,3‐dimethylcyclopentyl)acetamide after hydrolysis. In both cases, the remaining metalated portion α to the amide group was confirmed by deuteriolysis and could be utilized for an alkylation with methyl iodide. 相似文献
18.
19.
Dr. Wenlong Yang Dr. Jorge H. S. K. Monteiro Prof. Ana de Bettencourt‐Dias Prof. Vincent J. Catalano Prof. Wesley A. Chalifoux 《Angewandte Chemie (International ed. in English)》2016,55(35):10427-10430
The design of a relatively simple and efficient method to extend the π‐conjugation of readily available aromatics in one‐dimension is of significant value. In this paper, pyrenes, peropyrenes, and teropyrenes were synthesized through a double or quadruple benzannulation reaction of alkynes promoted by Brønsted acid. This novel method does not involve cyclodehydrogenation (oxidative aryl–aryl coupling) to arrive at the newly incorporated large arene moieties. All of the target compounds were synthesized in moderate to good yields and were fully characterized with the structures unambiguously confirmed by X‐ray crystallography. As expected, photophysical characterization clearly shows increasing red‐shifts as a function of extended conjugation within the fused ring systems. 相似文献