首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitrogen‐doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N‐doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface‐bonded N species, whereas the core remains N doped. N‐Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible‐light irradiation. The surface‐oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N‐doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N‐doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible‐light‐driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N‐doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N‐doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.  相似文献   

2.
Although catalytic processes mediated by surface plasmon resonance (SPR) excitation have emerged as a new frontier in catalysis, the selectivity of these processes remains poorly understood. Here, the selectivity of the SPR‐mediated oxidation of p‐aminothiophenol (PATP) employing Au NPs as catalysts was controlled by the choice of catalysts (Au or TiO2‐Au NPs) and by the modulation of the charge transfer from UV‐excited TiO2 to Au. When Au NPs were employed as catalyst, the SPR‐mediated oxidation of PATP yielded p,p‐dimercaptobenzene (DMAB). When TiO2‐Au NPs were employed as catalysts under both UV illumination and SPR excitation, p‐nitrophenol (PNTP) was formed from PATP in a single step. Interestingly, PNTP molecules were further reduced to DMAB after the UV illumination was removed. Our data show that control over charge‐transfer processes may play an important role to tune activity, product formation, and selectivity in SPR‐mediated catalytic processes.  相似文献   

3.
The metal ion-implantation of titanium oxide with various transition metal ions was carried out by applying by high voltage acceleration. The subsequent calcination of the implanted TiO2 in oxygen at around 723 K resulted in a large shift in the absorption spectra of the TiO2 toward visible light regions, its extent being dependent on the amount and the kind of metal ions implanted. Such metal ion-implanted titanium oxide catalysts were active in carrying out various photocatalytic reactions such as the decomposition of NO into N2, O2 and N2O at 275 K under irradiation with visible light longer than 450 nm. The application of this advanced, high energy metal ion-implantation method enables the novel design of titanium oxide photocatalysts which can absorb and initiate vital reactions under visible light and will contribute to the development of catalytic systems utilizing solar energy.  相似文献   

4.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

5.
Au core Ag shell composite structure nanoparticles were prepared using a sol method. The Au core Ag shell composite nanoparticles were loaded on TiO2 nanoparticles as support using a modified powder–sol method, enabling the generation of Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone. The sols were characterized by means of ultraviolet–visible light (UV–Vis) reflection spectrometry, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The activity of the Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone was evaluated and the effect of Cl? anions on the photocatalytic activity of the catalysts was highlighted. Results showed that Au @ Ag/TiO2 prepared via the modified powder–sol route in the presence of an appropriate amount of NaCl solid as demulsifier had better activity in the photocatalytic decomposition and elimination of ozone. At the same time, Au @ Ag/TiO2 catalysts had better ability to resist poisonous Cl? anions than conventional Au/TiO2 catalyst. The reasons could be, first, that NaCl was capable of reducing the concentration of free Ag+ by adsorption on the surface of Ag particles forming AgCl and enhancing the formation of Au core Ag shell particles, leading to a better resistance to Cl? anions of the catalysts, and, second, AgCl took part in the photocatalytic decomposition of ozone together with Au @ Ag/TiO2 catalysts and had a synergistic effect on the latter, resulting in better photocatalytic activity of Au @ Ag/TiO2 catalysts.  相似文献   

6.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   

7.
《中国化学会会志》2017,64(2):188-194
Rod‐like ZnO nanoparticles (NPs ) were synthesized from zinc powder by a simple hydrothermal oxidation method. The presence of acetylacetone could promote the oxidation reaction of Zn and the formation of hexagonal nanorods. Then, the as‐prepared samples were annealed in N2 , O2 , and air atmosphere at 550°C for 2 h to control the number of oxygen vacancies in the samples. The samples were characterized by X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, and UV –vis spectroscopy. The correlation between the oxygen vacancies and the photocatalytic activity was investigated. The results reveal that the annealing process alters the samples’ bandgap and number of the oxygen vacancies, thereby improving the photocatalytic activity. The enhancement of photodegradation efficiency arising from the appropriate content of oxygen vacancies is discussed.  相似文献   

8.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

9.
A hundred years on, the energy‐intensive Haber–Bosch process continues to turn the N2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N2 that is based on clean energy. Surface oxygen vacancies (surface Ovac) hold great potential for N2 adsorption and activation, but introducing Ovac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface Ovac by atomic layer deposition is described, forming a thin amorphous TiO2 layer on plasmon‐enhanced rutile TiO2/Au nanorods. Surface Ovac in the outer amorphous TiO2 thin layer promote the adsorption and activation of N2, which facilitates N2 reduction to ammonia by excited electrons from ultraviolet‐light‐driven TiO2 and visible‐light‐driven Au surface plasmons. The findings offer a new approach to N2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure).  相似文献   

10.
On the basis of experiments carried out with controlled amounts of residual oxygen and water, or by using oxygen‐isotope‐labeled Ti18O2 as the photocatalyst, we demonstrate that 18Os atoms behave as real catalytic species in the photo‐oxidation of acetonitrile‐dissolved aromatic compounds such as benzene, phenol, and benzaldehyde with TiO2. The experimental evidence allows a terminal‐oxygen indirect electron‐transfer (TOIET) mechanism to be proposed, which is a new pathway that involves the trapping of free photogenerated valence‐band holes at Os species and their incorporation into the reaction products, with simultaneous generation of oxygen vacancies at the TiO2 surface and their subsequent healing with oxygen atoms from either O2 or H2O molecules that are dissolved in the liquid phase. According to the TOIET mechanism, the TiO2 surface is not considered to remain stable, but is continuously changing in the course of the photocatalytic reaction, challenging earlier interpretations of TiO2 photocatalytic phenomena.  相似文献   

11.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

12.
The present theoretical DFT study discusses the structure and chemical activity of transition metal and metal oxide catalysts within the well-known cluster approach. Selective oxidation of carbon monoxide on gold supported on titania (Au/TiO2 (110)) as well as some key points in understanding the effect of non-metal doping on TiO2 with the aim to increase its photocatalytic functionality have been briefly discussed. It was shown that Au (with formal oxidation state equal to plus one) stabilized on water-assisted and vacancy containing TiO2 (110) can explain selective oxidation of CO. Here binding of O2 with the vacancy site is energetically preferable than its adsorption on an Au site. Conversely, CO adsorbs on an Au center of Au/TiO2 (110) which is energetically much more profitable than its interaction with the oxygen vacancy site. Also, carbon and nitrogen doping on TiO2 (110) leads to two different structures. Energetically most profitable is that carbon occupies an interstitial position in deep bulk while nitrogen replaces the protruded oxygen atom and forms a surface N-H group.  相似文献   

13.
The photocatalytic decomposition of liquid water on Pt-loaded TiO2 (Pt/TiO2) catalysts was investigated. The results obtained by XPS and XRD measurements of the catalysts as a function of the calcination temperature as well as the photocatalytic decomposition reactions of H2O clearly indicate that controlling the oxidation state of Pt as well as the amount of loaded Pt species are both important factors in the design of water-splitting photocatalysts having high efficiency and stoichiometry.  相似文献   

14.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

15.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

16.
The photocatalytic degradation of tris (2–butoxyethyl) phosphate (TBEP) flame retardant using visible light response catalysts TiO2/V2O5, (N,F-doped)-TiO2/V2O5, and N-doped-SrTiO3 has been studied by high-resolution orbitrap mass spectrometry. TBEP degradation followed first-order kinetics with half-life values ranging between 9.8 and 83.5 min. N-doped-SrTiO3 was the catalyst with better photocatalytic performance while activity for TiO2/V2O5 composites followed the trend: N, F- TiO2/V2O5 > N-TiO2/V2O5> TiO2/V2O5. The identified degradation products (DPs) revealed hydroxylation, further oxidation and dealkylation as major degradation pathways. Based on the identified DPs and scavenging experiments, ?OH radical-mediated reactions can be considered for the degradation of TBEP using TiO2 and SrTiO3-based photocatalytic materials.  相似文献   

17.
Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH)2 with CO2 formed during the low‐temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C. At these temperatures, Au/TiO2 also catalyzes CO2 formation, but does not allow for CO2 desorption, which results in self‐poisoning. At higher temperatures (above 0 °C), however, CO2 formation is rate‐limiting, which results in a much higher activity for Au/TiO2 under these reaction conditions.  相似文献   

18.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

19.
Supported gold nanoparticle catalysts show extraordinarily high activity in many reactions. While the relative poor thermal stability of Au nanoparticles against sintering at elevated temperatures severely limits their practical applications. Here atomic layer deposition (ALD) of TiO2 and Al2O3 was performed to deposit an Au/TiO2 catalyst with precise thickness con-trol, and the thermal stability was investigated. We surprisingly found that sub-nanometer-thick Al2O3 overcoat can su ciently inhibit the aggregation of Au particles up to 600 C in oxygen. On the other hand, the enhancement of Au nanoparticle stability by TiO2 overcoat is very limited. Di use reffectance infrared Fourier transform spectroscopy (DRIFTS) of CO chemisorption and X-ray photoelectron spectroscopy measurements both con rmed the ALD overcoat on Au particles surface and suggested that the presence of TiO2 and Al2O3 ALD overcoat on Au nanoparticles does not considerably change the electronic properties of Au nanoparticles. The catalytic activities of the Al2O3 overcoated Au/TiO2 catalysts in CO oxidation increased as increasing calcination temperature, which suggests that the embed-ded Au nanoparticles become more accessible for catalytic function after high temperature treatment, consistent with our DRIFTS CO chemisorption results.  相似文献   

20.
To investigate the role of oxygen defects on the photocatalytic activity of TiO2, the TiO2 nanocrystals with/without oxygen defects are successfully synthesized by the hydrothermal and sol-gel methods, respectively. The as-prepared TiO2 nanocrystals with defects are light blue and the absorption edge of light is towards the visible light region (~420 nm). Raman and X-ray photoelectron spectroscopy (XPS) measurements all confirm that the concentration of oxygen vacancies in the TiO2 synthesized by the sol-gel method is less than that synthesized through the hydrothermal route. The introduction of oxygen defects contributes to a new state in the band gap that narrows the band gap, which is the reason for the extension of light absorption into the visible light region. The photocurrent results confirm that this band-gap narrowing enhances the photocurrent response under simulated solar light irradiation. The TiO2 with oxygen defects shows a higher photocatalytic activity for decomposition of a methylene blue solution compared with that of the perfect TiO2 sample. The photocatalytic mechanism is discussed based on the density functional theory calculations and photoluminescence spectroscopy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号