首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new chiral C2‐symmetric bis(phosphinite) ligands and their palladium(II) complexes have been synthesized and for the first time used as catalysts in the palladium‐catalysed asymmetric intermolecular Heck coupling reactions of 2,3‐dihydrofuran with iodobenzene or aryl triflate. Under optimized conditions, products were obtained with high conversions and moderate to good enantioselectivities. The new C2‐symmetric bis(phosphinite) ligands and their palladium(II) complexes were characterized using multinuclear NMR and Fourier transform infrared spectroscopies and elemental analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
1,8‐Bis[(diethylamino)phosphino]naphthalene ( 1 ) reacted with dry methanol in dichloromethane to form the new bis‐phosphonite ligand 1,8‐bis[(dimethoxy)phosphino]naphthalene (dmeopn, 2 ). By oxidation of 2 with H2O2 · (H2N)2C(:O) the corresponding bis‐phosphonate, 1,8‐bis[(dimethoxy)phosphoryl]naphthalene ( 3 ), was obtained quantitatively. Reaction of 3 with phosphorus trichloride unexpectedly furnished a 2.4 : 1 mixture of the bis‐phosphonate anhydrides rac‐ and meso‐1,3‐dimethoxy‐1,3‐dioxo‐2,3‐dihydro‐1,3‐diphospha‐2‐oxaphenalene (rac‐ 4 and meso‐ 4 ) from which rac‐ 4 could be fractionally crystallised. The bis‐phosphonite 2 behaved as a normal bidentate chelate ligand towards Mo0 and PdII, and furnished the complexes [(dmeopn)Mo(CO)4] ( 5 ) and [(dmeopn)PdCl2] ( 6 ) when treated with [(nor)Mo(CO)4] or [(cod)PdCl2] (nor = norbornadiene, cod = cycloocta‐1,8‐diene). Attempts to prepare 1,8‐diphosphinonaphthalene ( 7 ) by reducing 2 or 3 with LiAlH4 or LiAlH4/TMSCl (1 : 1) (TMSCl = trimethyl chlorosilane) in THF led to inseparable mixtures of phosphorus‐containing products. Compounds 2 – 6 were characterised by 1H‐, 13C‐, and 31P‐NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. X‐ray crystal structure analyses were carried out for the bis‐phosphonate anhydride rac‐ 4 and the palladium(II) complex 6 . The geometry of compound rac‐ 4 , in which the phosphorus atoms are connected by an oxygen atom, reveals a relief of strain from the bis‐phosphine 1 , whereas the 1,8‐P,P′‐naphthalenediyl group in 6 is surprisingly distorted; the P atoms are displaced from the naphthalene best plane by –46.7 and 54.5 pm.  相似文献   

3.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   

4.
Benzenehexapyrrole‐α,ω‐dialdehyde, composed of a pair of formyltripyrrole units with a 1,3‐phenylene linker, was metallated to give dinuclear single‐stranded helicates. X‐ray studies of the bis‐nickel(II) complex showed a helical C2 form with a pair of helical–metal coordination planes of a 3N+O donor set. The terminal aldehyde was readily converted into the imine by optically active amines, whereby helix‐sense bias was induced. Bis‐nickel(II) and bis‐palladium(II) complexes of the benzenehexapyrrole‐α,ω‐diimines were studied to show that an enantiomer pair of the helical C2 form are interchanged by slow flipping of each coordination plane and fast rotation around the C(benzene)?C(pyrrole) bond. The helical screw in the bis‐nickel(II) complexes was biased to one side in more than 95 % diastereoselectivity, which was achieved by using a variety of optically active amines, such as (R)‐1‐cyclohexylethylamine, (S)‐1‐ phenylethylamine, L ‐Phe(OEt) (Phe=phenylalanine), and (R)‐valinol. The nickel complexes showed much better diastereoselectivity than the corresponding palladium complexes.  相似文献   

5.
A series of functionalized diaza‐ and tetraazatetracenes was synthesized, either by condensation of an aromatic diamine with an ortho‐quinone/diethyloxalate followed by chlorination with POCl3 to give diazatetracenes or by palladium‐catalyzed coupling of a phenylenediamine with various 2,3‐dichloroquinoxalines to give tetraazatetracenes (after oxidation with MnO2). Representative examples included halogenated and nitrated derivatives. The optical properties of these azatetracenes were discussed with respect to their molecular structures and substitution patterns. The diazatetracenes and tetraazatetracenes formed two different groups that had significantly different electronic structures and properties. Furthermore, 1,2,3,4‐tetrafluoro‐6,11‐bis((triisopropylsilyl)ethynyl)benzo[b]phenazine was synthesized, which is the first reported fluorinated diazatetracene. Single‐crystal X‐ray analysis of this compound is reported.  相似文献   

6.
A series of new chiral and achiral nickel(II) and palladium(II) complexes, {bis[N,N′‐(2,6‐diethyl‐4‐naphthylphenyl)imino]‐1,2‐dimethylethane}dibromonickel 3a , {bis[N,N′‐(4‐fluoro‐2‐methyl‐6‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane}dibromonickel rac‐(RS)‐ 3b , {bis[N,N′‐(4‐fluoro‐6‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane}dibromonickel rac‐(RR/SS)‐ 3c and {bis[N,N′‐(4‐fluoro‐6‐sec‐phenethylphenyl)imino]‐1,2‐dimethylethane}dichloropalladium rac‐(RR/SS)‐ 3d were successfully synthesized and characterized. The molecular structures of representative ligand rac‐(RS)‐ 2b , nickel complex 3a , rac‐(RR/SS)‐ 3c and palladium complex rac‐(RR/SS)‐ 3d were determined by X‐ray crystallography. The structures of complexes 3a and rac‐(RR/SS)‐ 3c have pseudo‐tetrahedral geometry about the nickel center, showing C2 molecular symmetry. However, the structure of palladium complex rac‐(RR/SS)‐ 3d has pseudo‐square planar geometry about the palladium center, showing C2 molecular symmetry. Complex 3e {bis[N,N′‐(2,6‐dimethylphenyl)imino]‐1,2‐dimethylethane}dibromonickel was also synthesized for comparison. Nickel complex rac‐(RS)‐ 3b bearing strong electron‐withdrawing fluorine group in the para‐aryl position and a chiral sec‐phenethyl group in the ortho‐aryl position of the ligand (one methyl group in the ortho‐aryl position) displays the highest catalytic activity for ethylene and styrene polymerization, and produced highly branched polyethylene and syndiotactic‐rich polystyrene. However, palladium complex rac‐(RR/SS)‐ 3d shows low catalytic activity for ethylene and styrene polymerization due to the poor leaving group, Cl, attached to palladium and the unfavorable molecular structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A novel palladium complex 4, cis‐dichloride(1,2‐bis(diphenylphosphino)vinyl‐P,P′,C)palladium(II)‐(bis(diphenylphosphino)methane‐P,P′)cobaltacarbonyl, was obtained and characterized from the treatment of [(μ‐Ph2PCH2PPh2)Co2(CO)4][(Ph2PC≡CPPh2)‐PdCl2] 3 with hydrochloric acid. The framework of 4 can be regarded as a grouping of two metal‐containing fragments: ‐Co(CO)2(dppm) and PdCl2(μ‐P,P‐Ph2PCH=C(‐)PPh2).  相似文献   

8.
Regioregular poly(3‐octylthiophene)s were synthesized through a palladium‐catalyzed Suzuki polycondensation of 2‐(5‐iodo‐4‐octyl‐2‐thienyl)‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane. The effects of the palladium catalyst {tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4], palladium(II) acetate [Pd(OAc)2], [1, 1′‐bis(diphenylphosphino)ferrocene]dichloropalladium(II) [Pd(dppf)Cl2], tris(dibenzylideneacetone)dipalladium(0), or bis(triphenylphosphine)palladium(II) dichloride [Pd(PPh3)2Cl2]} and the reaction conditions (bases and solvents) were investigated. NMR spectroscopy revealed that poly(3‐octylthiophene)s prepared via this route were essentially regioregular. According to size exclusion chromatography, the highest molecular weights were obtained with in situ generated Pd(PPh3)4 and tetrakis(tri‐o‐tolylphosphine]palladium(0) {Pd[P(o‐Tol)3]4} catalysts or more reactive, phosphine‐free Pd(OAc)2. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry was used to analyze end groups and allowed the determination of some mechanistic aspects of the Suzuki polycondensation. The polymers were commonly terminated with hydrogen or iodine as a result of deboronation and some deiodination. Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd[P(o‐Tol)3]4 induced aryl–aryl exchange reactions with the palladium center and resulted in some chains having phenyl‐ and o‐tolyl‐capped chain ends. Pd(dppf)Cl2 yielded only one type of chain, and it had hydrogen end groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1454–1462, 2005  相似文献   

9.
Two phosphine ligands of [Pd(PPh3)4] were substituted by π(C?S) coordination of 4‐bromodithiobenzoic acid methyl ester resulting in complex 1 . The same ester, after alkylation, afforded the dicationic complex bis(μ‐methanethiolato)tetrakis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 2 ) from the same palladium source. A related thiolato‐bridged complex, bis(μ‐methanethiolato)bis(1‐methylpyridin‐2(1H)‐ylidene)bis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 4 ) and the trinuclear cluster tris(μ‐methanethiolato)tris(triphenylphosphine)tripalladium(+)(3Pd? Pd) ( 5 ) resulted from treatment of a known cationic pyridinylidene complex with MeSLi. The double oxidative substitution reaction of [Pd(PPh3)4] with 1,5‐dichloro‐9,10‐anthraquinone afforded trans‐dichloro[μ‐(9,10‐dihydro‐9,10‐dioxoanthracene‐1,5‐diyl)]tetrakis(triphenylphosphine)dipalladium ( 6 ). Some of these complexes could be fully characterized by 1H‐, 13C‐, and 31P‐NMR spectroscopy, mass spectrometry, and elemental analysis. The crystal and molecular structures of all of them, and of trans‐bis(1,3‐dihydro‐1,3‐dimethyl‐2H‐imidazol‐2‐ylidene)diiodopalladium ( 3 ), were determined by single‐crystal X‐ray diffraction.  相似文献   

10.
The new C2‐symmetric bis‐oxazoline (=bis[4,5‐dihydrooxazole]) 2 with a chiral trans‐(2R,3R)‐2,3‐bis(3,5‐diphenylphenyl)cyclopropylidene (=trans‐(2R,3R)‐2,3‐bis([1,1′: 3′,1″‐terphenyl]‐5′‐yl)cyclopropylidene) backbone was efficiently synthesized (Scheme). All synthetic steps were easy to perform and led to the desired product in good overall yields. Compound 2 was tested and compared as ligand in several enantioselective catalytic reactions such as palladium(0)‐catalyzed enantioselective allylic alkylations and copper(I)‐catalyzed enantioselective cyclopropanations and aziridinations.  相似文献   

11.
The efficiency of the deprotonated aryl bis‐sulfone [2,6‐{(p‐tolyl)SO2}2C6H3]? as an O,C,O‐coordinating pincer‐type ligand was described. The bis‐sulfone precursor was synthesized using a straightforward palladium‐catalyzed cross‐coupling reaction. As a result of directed ortho metalation (DoM) through sulfonyl groups, a selective lithiation of the aryl group was achieved and the corresponding carbanion was isolated and its structure determined by single‐crystal X‐ray diffraction analysis. A heteroleptic tin(II) complex has been prepared by a nucleophilic substitution reaction. Crystallographic analysis and DFT calculations indicate that the bis‐sulfonyl moiety acts as a new O,C,O‐coordinating pincer‐type ligand with intramolecular S?O coordination to a tin(II) center. The cis form with the two nonbonded oxygen atoms of the sulfonyl groups on the same side is preferentially obtained.  相似文献   

12.
The title compounds, trans‐dichloro­bis[(1R,2R,3R,5S)‐(−)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II), [PdCl2(C10H19N)2], and trans‐dichloro­bis[(1S,2S,3S,5R)‐(+)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II) hemihydrate, [PdCl2(C10H19N)2]·0.5H2O, present different arrangements of the amine ligands coordinated to PdII, viz. antiperiplanar in the former case and (−)anticlinal in the latter. The hemihydrate is an inclusion compound, with a Pd coordination complex and disordered water mol­ecules residing on crystallographic twofold axes. The crystal structure for the hemihydrate includes a short Pd⋯Pd separation of 3.4133 (13) Å.  相似文献   

13.
In the coordination chemistry of palladium, dimers bridged via halides are a common motif. Higher oligomers, however, are still rare. We report the structure of an alternating eight‐membered [Pd4Br4]4− ring framed by cycloheptatrienide ligands, which was obtained by cocrystallization of dimers and tetramers of the complex salt bromido{η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II) tetrafluoroborate, namely bis[di‐μ‐bromido‐bis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II))] cyclo‐tetra‐μ‐bromido‐tetrakis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II)) octakis(tetrafluoroborate) dichloromethane octasolvate, [Pd4Br4(C22H26N2)4][Pd2Br2(C22H26N2)2]2(BF4)8·8CH2Cl2. These dimers and tetramers form a highly dynamic equilibrium in solution which was studied by low‐temperature NMR spectroscopy. In the light of the presented results, tetrameric PdII species can be assumed to co‐exist as a second species in many cases where by current knowledge only a dimeric compound would be expected.  相似文献   

14.
The efficiency of the deprotonated aryl bis‐sulfone [2,6‐{(p‐tolyl)SO2}2C6H3] as an O,C,O‐coordinating pincer‐type ligand was described. The bis‐sulfone precursor was synthesized using a straightforward palladium‐catalyzed cross‐coupling reaction. As a result of directed ortho metalation (DoM) through sulfonyl groups, a selective lithiation of the aryl group was achieved and the corresponding carbanion was isolated and its structure determined by single‐crystal X‐ray diffraction analysis. A heteroleptic tin(II) complex has been prepared by a nucleophilic substitution reaction. Crystallographic analysis and DFT calculations indicate that the bis‐sulfonyl moiety acts as a new O,C,O‐coordinating pincer‐type ligand with intramolecular SO coordination to a tin(II) center. The cis form with the two nonbonded oxygen atoms of the sulfonyl groups on the same side is preferentially obtained.  相似文献   

15.
An enantioselective [3+2] cycloaddition of vinyl cyclopropane derived from 1,3‐indanedione with nitroalkenes catalyzed by palladium(0) with a chiral bis(tert‐amine) ligand was developed in high yields with good diastereoselectivities and excellent enantioselectivities. The resulting bis(tert‐amine)–palladium complex proved to be a highly efficient catalyst for this cycloaddition.  相似文献   

16.
Partially fluorinated 1,4‐Diazadiene (α‐Diimine) ligand 3,5‐CF3‐BIAN (1) formed from 3,5‐bis(trifluoromethyl)aniline and acenaphthenequinone was used in the synthesis of palladium dichlorido complex 2 and its mono methyl chlorido palladium complex 3 . Both complexes as well as side products of the reaction with methyl lithium such as trans‐bis(3,5‐bis(trifluoromethyl)aniline complex 4 and an interesting mixed valent trinuclear V‐shaped palladium cluster 5 with two bridging μ23‐N,CN′ non‐innocent BIAN ligands were structurally characterized by the single‐crystal XRD method.  相似文献   

17.
A new series of palladium complexes ( Pd1–Pd5 ) ligated by symmetrical 2,3‐diiminobutane derivatives, 2,3‐bis[2,6‐bis{bis(4‐FC6H4)2CH}2‐4‐(alkyl)C6H2N]C4H6 (alkyl = Me L1 , Et L2 , i Pr L3 , t Bu L4 ) and 2,3‐bis[2,6‐bis{bis(C6H5)2CH}2‐4‐{(CH3)3C}C6H2N]C4H6 L5 , have been prepared and well characterized, and their catalytic scope toward ethylene polymerization have been investigated. Upon activation with MAO, all palladium complexes ( Pd1–Pd5) exhibited good activities (up to 1.44 × 106 g (PE) mol?1(Pd) h?1) and produced higher molecular weight polyethylene in the range of 105 g mol?1 with precise molecular weight distribution (M w/M n = 1.37–1.77). One of the long‐standing limiting features of the Brookhart type α‐diimine Pd(II) catalysts is that they produce highly branched (ca. 100/1000 C atoms) and totally amorphous polymer. Conversely, herein Pd5 produced polymers having dramatically lower branching number (28/1000) as well as improved melting temperature up to 73.1 °C showing well‐controlled linear architecture, and very similar to polyethylene materials generated by early‐transition‐metal based catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3214–3222  相似文献   

18.
A pressure‐controlled procedure for the SN1 reaction of rac‐1‐[(dimethylamino)methyl]‐2‐(tributylstannyl)ferrocene ( 1 ) to rac‐1‐(phthalimidomethyl)‐2‐(tributylstannyl)ferrocene ( 2 ) was developed. Pd0‐Catalyzed Stille coupling of 2 with iodobenzene afforded rac‐1‐phenyl‐2‐(N‐phthalimidomethyl)ferrocene ( 5 ) in 74% yield; after trace enrichment by crystallization of the combined mother liquors, one single crystal of each, 5 , catalysis intermediate trans‐iodo(σ‐phenyl)bis(triphenylarsino)palladium(II) ( 7 ), trans‐diiodobis(triphenylarsino)palladium(II) ( 8 ), and rac‐2,2′‐bis(phthalimidomethyl)‐1,1′‐biferrocene ( 9 ) could be isolated by crystal sorting under a microscope and characterized by X‐ray crystal structure analysis. Furthermore, 5 was deprotected to amine ( 11 ), which does even survive the Birch reduction to rac‐1‐(aminomethyl)‐2‐(cyclohexa‐2,5‐dienyl)ferrocene ( 12 ).  相似文献   

19.
A highly effective, easy to handle and environmentally benign process for palladium‐mediated Suzuki cross‐coupling is developed. The in situ prepared three‐component system Pd(OAc)2–1,3‐bis(alkyl)imidazolinium chlorides (2a–f) and Cs2CO3 catalyses quantitatively the Suzuki cross‐coupling of deactivated aryl chlorides. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
An N‐heterocyclic carbene and phosphite synergistically enhanced Pd/C catalyst system has been developed for Suzuki coupling of aryl chlorides and aryl boronic acids from commercially available Pd/C with sterically demanding N,N′‐bis(2,6‐diisopropylphenyl)imidazolylidene and trimethylphosphite. A remarkable increase in catalytic activity of Pd/C was observed when used along with 1 equiv. N,N′‐bis(2,6‐diisopropylphenyl)imidazolium chloride and 2 equiv. phosphite with respect to palladium in appropriate solvents that were found to play a crucial role in Pd/C‐NHC‐P(OR)3‐catalyzed Suzuki coupling. A dramatic ortho‐substitution effect of carbonyl and nitrile groups in aryl chlorides was observed and explained by a modified quasi‐heterogeneous catalysis mechanism. The Pd/C catalyst could be easily recovered from reaction mixtures by simple filtration and only low palladium contamination was detected in the biparyl products. A practical process for the synthesis of 4‐biphenylcarbonitrile has therefore been developed using the N‐heterocyclic carbene/phosphite‐assisted Pd/C‐catalyzed Suzuki coupling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号