首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
苏亚民  戴大章 《分子催化》2021,35(5):471-483
手性化合物外消旋体的生物催化去对称化是目前生物与有机合成领域的重点、难点和热点,也是制备光学纯手性化合物的重要途径.我们将近年来发展起来的手性化合物生物催化去对称化的方法归纳为立体转化去对称化法、线性去对称化法、循环去对称化法、对映体收敛去对称化法和一步去对称化法5大类,对这些方法的原理、特点及其应用进展分别进行介绍,...  相似文献   

5.
Alcohol dehydrogenases can act as powerful catalysts in the preparation of optically pure γ‐hydroxy‐δ‐lactones by means of an enantioconvergent dynamic redox isomerization of readily available Achmatowicz‐type pyranones. Imitating the traditionally metal‐mediated “borrowing hydrogen” approach to shuffle hydrides across molecular architectures and interconvert functional groups, this chemoinspired and purely biocatalytic interpretation effectively expands the enzymatic toolbox and provides new opportunities in the assembly of multienzyme cascades and tailor‐made cellular factories.  相似文献   

6.
A widely applicable triazole‐substituted chiral aryl iodide is described as catalyst for enantioselective oxidation reactions. The introduction of a substituent in ortho‐position to the iodide is key for its high reactivity and selectivity. Besides a robust and modular synthesis, the main advantage of this catalyst is the excellent performance in a plethora of mechanistically diverse enantioselective transformations, such as spirocyclizations, phenol dearomatizations, α‐oxygenations, and oxidative rearrangements. DFT‐calculations of in situ generated [hydroxy(tosyloxy)iodo]arene isomers give an initial rational for the observed reactivity.  相似文献   

7.
A cyanide‐free platform technology for the synthesis of chiral nitriles by biocatalytic enantioselective dehydration of a wide range of aldoximes is reported. The nitriles were obtained with high enantiomeric excess of >90 % ee (and up to 99 % ee ) in many cases, and a “privileged substrate structure” with respect to high enantioselectivity was identified. Furthermore, a surprising phenomenon was observed for the enantiospecificity that is usually not observed in enzyme catalysis. Depending on whether the E or Z isomer of the racemic aldoxime substrate was employed, one or the other enantiomer of the corresponding nitrile was formed preferentially with the same enzyme.  相似文献   

8.
A 5-step enantioselective synthesis of the potent anti-HIV nucleoside islatravir is reported. The highly efficient route was enabled by a novel enantioselective alkynylation of an α,β-unsaturated ketone, a unique ozonolysis-dealkylation cascade in water, and an enzymatic aldol-glycosylation cascade.  相似文献   

9.
The asymmetric synthesis of tricyclic compounds by the desymmetrization of cyclohexadienones is presented. The reaction tolerated a large variety of substituents at different positions of the cyclohexadienone, and heterocyclic rings of different sizes were accessible. Density functional theory calculations showed that the reaction proceeds through an asynchronous [4+2] cycloaddition.  相似文献   

10.
A copper‐catalyzed enantioselective arylative desymmetrization of prochiral cyclopentenes with diaryliodonium salts was developed. In the presence of a catalytic amount of a chiral copper–bisoxazoline complex, which was generated in situ, the reaction of 4‐substituted or 4,4‐disubstituted cyclopent‐1‐enes with diaryliodonium hexafluoroarsenates afforded the chiral arylated products in good yields with excellent enantioselectivity. A cyclohexyl‐containing Box ligand was essential for the high enantioselectivity. Transformation of the enantiomerically enriched adducts into other chiral building blocks is also documented.  相似文献   

11.
The unprecedented desymmetrization of prochiral dialdehydes catalyzed by N-heterocyclic carbenes under oxidative conditions was applied to the highly enantioselective synthesis of 1,4-dihydropyridines (DHPs) starting from 3,5-dicarbaldehyde substrates. Synthetic elaboration of the resulting 5-formyl-1,4-DHP-3-carboxylates allowed for access to the class of pharmaceutically relevant 1,4-DHP-3,5-dicarboxylates (Hantzsch esters). DFT calculations suggested that the enantioselectivity of the process is determined by the transition state involving the oxidation of the Breslow intermediate by the external quinone oxidant.  相似文献   

12.
A copper‐catalyzed enantioselective transformation of tris(hydroxymethyl)aminomethane‐derived aminotriols was developed to provide multisubstituted oxazolines with a tetrasubstituted carbon center. The present transformation consisted of sequential reactions involving mono‐sulfonylation of aminotriols, subsequent intramolecular cyclization to afford prochiral oxazoline diols, and sulfonylative asymmetric desymmetrization of resultant oxazoline diols. In addition, the kinetic resolution process would be involved in the sulfonylative asymmetric desymmetrization step, which would amplify the enantiopurities of the desired products. Various aminotriols were tolerated in the present reaction, affording the desired oxazolines in good to high yields with excellent enantioselectivities. The synthetic utility of the present reaction was demonstrated by the transformation of the optically active oxazoline into a chiral α‐tertiary amine motif.  相似文献   

13.
14.
Nature provides an inexhaustible diversity of small organic molecules with beautiful molecular architectures that have strong and selective inhibitory activities. However, this tremendous biomedical potential often remains inaccessible, as the structural complexity of natural products can render their synthetic preparation extremely challenging. This problem is addressable by harnessing the biocatalytic procedures evolved by nature. In this work, we present an enzymatic total synthesis of ikarugamycin. The use of an iterative PKS/NRPS machinery and two reductases has allowed the construction of 15 carbon–carbon and 2 carbon–nitrogen bonds in a biocatalytic one‐pot reaction. By scaling‐up this method we demonstrate the applicability of biocatalytic approaches for the ex vivo synthesis of complex natural products.  相似文献   

15.
Desymmetrization of diols is a powerful tool to the synthesis of chiral building blocks. Among the different approaches to perform discrimination between both enantiotopic hydroxyl groups, the organocatalytic approach has gained importance in the last years. A diverse range of organocatalysts has been used to efficiently promote this enantioselective transformation and this Minireview examines the different contributions in this field.  相似文献   

16.
17.
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non‐activated C?H bonds. For many of these reactions, no “classical” chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.  相似文献   

18.
19.
20.
Chiral allylrhodium nucleophiles: The highly diastereo- and enantioselective title reaction of a range of cyclic imines with various potassium allyltrifluoroborates most likely proceeds via allylrhodium(I) intermediates, and represents the first rhodium-catalyzed enantioselective nucleophilic allylation of π?electrophiles with allylboron compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号