首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.  相似文献   

2.
The scheme of quantisation of non-local field theory is formulated. An intermediate regularisation is introduced into the non-local Lagrangian of the classical scalar field in such a way that the procedure of the canonical quantisation leads to the appearance of additional ghost states with indefinite metrics. The ghost states disappear when the regularisation is removed but the propagator of the scalar particle becomes non-local and theS-matrix is finite, unitary, causal and covariant in each perturbation order.  相似文献   

3.
In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.  相似文献   

4.
We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy, respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.  相似文献   

5.
Several of the recently discovered classical and quantum features of affine Toda field theory are briefly reviewed, with particular emphasis on the Lie algebraic structure of masses, conserved quantities and S-matrices.  相似文献   

6.
The algebraic foundation of cohomological field theory is presented. It is shown that these theories are based upon realizations of an algebra which contains operators for both BRST and vector supersymmetry. Through a localization of this algebra, we construct a theory of cohomological gravity in arbitrary dimensions. The observables in the theory are polynomial, but generally non-local operators, and have a natural interpretation in terms of a universal bundle for gravity. As such, their correlation functions correspond to cohomology classes on moduli spaces of Riemannian connections. In this uniformization approach, different moduli spaces are obtained by introducing curvature singularities on codimension two submanifolds via a puncture operator. This puncture operator is constructed from a naturally occuring differential form of co-degree two in the theory, and we are led to speculate on connections between this continuum quantum field theory, and the discrete Regge calculus.  相似文献   

7.
A theory for the generation of aerodynamic sound, stated in terms of convected simple sources and dipoles, is presented. The sources are found to depend upon convective derivatives of the hydrodynamic pressure within the turbulent source region. The results are similar to earlier efforts involving simple sources, sometimes called dilatational sources. The results are modified for effects involving measurements on moving flows. The theory shows explicitly the refractive effects of shear flow within the source region, as well as of temperature changes (if any) within the source region. The oscillating cylinder problem is discussed and the results of the present theory are found to agree with those obtained by Lauvstad using a matched asymptotic expansion for the same problem. The theory is used to predict the temperature dependence of sound power for hot jets.Consultant for Bolt Beranek and Newman, Inc.  相似文献   

8.
R.C. Tautz  I. Lerche 《Physics letters. A》2011,375(27):2587-2595
Including a random component of a magnetic field parallel to an ambient field introduces a mean perpendicular motion to the average field line. This effect is normally not discussed because one customarily chooses at the outset to ignore such a field component in discussing random walk and diffusion of field lines. A discussion of the basic effect is given, indicating that any random magnetic field with a non-zero helicity will lead to such a non-zero perpendicular mean motion. Several exact analytic illustrations are given of the effect as well as a simple numerical illustration.  相似文献   

9.
François Gelis 《Pramana》2000,55(1-2):113-124
In this talk, I review recent progress made in two areas of thermal field theory. In particular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate.  相似文献   

10.
In this paper we analyze perturbatively a g?4classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplify the calculations and make the classical perturbative calculations almost “identical” formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem.  相似文献   

11.
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.  相似文献   

12.
13.
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz–Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark–antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC=2−+JPC=2+ is, to our knowledge, given here for the first time.  相似文献   

14.
15.
Based on our previous work on the differential geometry for the closed string double field theory, we construct a Yang-Mills action which is covariant under O(D,D) T-duality rotation and invariant under three-types of gauge transformations: non-Abelian Yang-Mills, diffeomorphism and one-form gauge symmetries. In double field formulation, in a manifestly covariant manner our action couples a single O(D,D) vector potential to the closed string double field theory. In terms of undoubled component fields, it couples a usual Yang-Mills gauge field to an additional one-form field and also to the closed string background fields which consist of a dilaton, graviton and a two-form gauge field. Our resulting action resembles a twisted Yang-Mills action.  相似文献   

16.
The two-point integrals contributing to the self-energy of a particle in a three-dimensional quantum field theory are calculated to two-loop order in perturbation theory as well as the vacuum ones contributing to the effective potential to three-loop order. For almost every integral an expression in terms of elementary and dilogarithm functions is obtained. For two integrals, the master integral and the Mercedes integral, a one-dimensional integral representation is obtained with an integrand consisting only of elementary functions. The results are applied to a scalar λφ4 theory.  相似文献   

17.
A field theory model onR 2 in which the basic fields are Ising spins instead of Gaussian spins is examined. Using statistical mechanics techniques we discuss the ultraviolet and the infrared problems. In particular we discuss a technique yielding the asymptotic expansion in of the ground state energy, as 0, without using the cluster expansion.Supported in part by Consiglio Nazionale delle Ricerche.  相似文献   

18.
These are three introductory lectures on the relation between representations of affine Kac-Moody algebras, homology of configuration spaces with local coefficient systems, and quantum groups. The first lecture contains background on highest weight representations of affine Kac-Moody algebras. In the second lecture, conformal blocks, the Friedan-Shenker connection and the Knizhnik-Zamolodchikov (KZ) equation are reviewed. In the third lecture, the case of slz is studied in more detail. Integral representations of solutions of the KZ equation are derived, and recent results, obtained in collaboration with C. Wieczerkowski, on the relation between integration cycles and representations of Uq (sl2) are explained.  相似文献   

19.
We present a detailed algebraic study of the N=2 cohomological set-up describing the balanced topological field theory of Dijkgraaf and Moore. We emphasize the role of N=2 topological supersymmetry and internal symmetry by a systematic use of superfield techniques and of an covariant formalism. We provide a definition of N=2 basic and equivariant cohomology, generalizing Dijkgraaf’s and Moore’s, and of N=2 connection. For a general manifold with a group action, we show that: (i) the N=2 basic cohomology is isomorphic to the tensor product of the ordinary N=1 basic cohomology and a universal group theoretic factor; (ii) the affine spaces of N=2 and N=1 connections are isomorphic.  相似文献   

20.
It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery of renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the observer's ability to probe this information experimentally, we also calculate the correction to the Gaussian entropy for two specific non-Gaussian states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号